
Introduction
Expressive Power

Algorithms
Future Works

Expressive Power and Algorithms

Guillaume Bonfante1 Pierre Boudes2 Jean-Yves Moyen2

Jean-Yves.Moyen@lipn.univ-paris13.fr

1Université de Lorraine
École des Mines de Nancy

2Université Paris 13

Partly supported by the ANR project Complice (ANR-08-BLANC-0211-01)

November 2013

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Jean-Yves.Moyen@lipn.univ-paris13.fr

Introduction

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Motivations

Are “complicated” programming constructions really
useful? We’re still Turing-complete without them.
High-order? Non-determinism? Co-arity? Multiple tapes?
Large alphabets? . . .

Which is “the best” ICC system for Ptime?
MPO+QI? DLAL? mwp-polynomials? NSI? . . .

How to even compare them?

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Motivations

Are “complicated” programming constructions really
useful? We’re still Turing-complete without them.
High-order? Non-determinism? Co-arity? Multiple tapes?
Large alphabets? . . .

Which is “the best” ICC system for Ptime?
MPO+QI? DLAL? mwp-polynomials? NSI? . . .

How to even compare them?

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Magic Trick!

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Explaining the Trick

bead = program

color = computed function

small bead = a given syntactical criterion

Each set of “programs” computes the same set of “functions”.
But the first one has more things (small black beads) and only
the filter can reveal it.

There is no color- and size-preserving function from the first set
to the second.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Explaining the Trick

bead = program

color = computed function

small bead = a given syntactical criterion

Each set of “programs” computes the same set of “functions”.
But the first one has more things (small black beads) and only
the filter can reveal it.

There is no color- and size-preserving function from the first set
to the second.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Explaining the Trick

bead = program

color = computed function

small bead = a given syntactical criterion

Each set of “programs” computes the same set of “functions”.
But the first one has more things (small black beads) and only
the filter can reveal it.

There is no color- and size-preserving function from the first set
to the second.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Life without Cons

First order functional programs are Turing-complete. Why
using high-order?

Libraries

Easier to write, more elegant programs.

Jones looked at “CONS free” (read only) programs.

First order CONS free: Ptime

Second order CONS free: Exptime

High order CONS free: Elem

High order is “more expressive” than first order, but
Turing-completeness hide this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Life without Cons

First order functional programs are Turing-complete. Why
using high-order?

Libraries

Easier to write, more elegant programs.

Jones looked at “CONS free” (read only) programs.

First order CONS free: Ptime

Second order CONS free: Exptime

High order CONS free: Elem

High order is “more expressive” than first order, but
Turing-completeness hide this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Life without Cons

First order functional programs are Turing-complete. Why
using high-order?

Libraries

Easier to write, more elegant programs.

Jones looked at “CONS free” (read only) programs.

First order CONS free: Ptime

Second order CONS free: Exptime

High order CONS free: Elem

High order is “more expressive” than first order, but
Turing-completeness hide this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Motivations
Explaining the trick

Life without Cons

First order functional programs are Turing-complete. Why
using high-order?

Libraries

Easier to write, more elegant programs.

Jones looked at “CONS free” (read only) programs.

First order CONS free: Ptime

Second order CONS free: Exptime

High order CONS free: Elem

High order is “more expressive” than first order, but
Turing-completeness hide this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Expressive Power

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K

JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A
J•K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K

JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A
J•K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K

JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A
J•K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A

B
J•K

J•K

id

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A

B
J•K

J•K

id Hard to prove

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Compilation

Programming language: P ⊃ L,M (syntactic)

Computable functions: C

Semantics: P C
J•K JLK = A = B = JMK

Compilation ϕ : L→M , Jϕ(p)K = JpK Semantics preserving

L

M

A

B

ϕ

J•K

J•K

id

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Filtering

Hypothesis

JLK = A = B = JMK

“Filter”: set of programs F ⊂ P (syntactic criterion)

Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Conclusion

There is no filter-preserving compilation: p ∈ F ⇒ ϕ(p) ∈ F

Conversely, if there exists a filter preserving compilation, then
A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Filtering

Hypothesis

JLK = A = B = JMK
“Filter”: set of programs F ⊂ P (syntactic criterion)

Filtering: L′ = L ∩ F , M ′ = M ∩ F

Breaking semantic equality: JL′K = A′) B′ = JM ′K

Conclusion

There is no filter-preserving compilation: p ∈ F ⇒ ϕ(p) ∈ F

Conversely, if there exists a filter preserving compilation, then
A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Filtering

Hypothesis

JLK = A = B = JMK
“Filter”: set of programs F ⊂ P (syntactic criterion)

Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Conclusion

There is no filter-preserving compilation: p ∈ F ⇒ ϕ(p) ∈ F

Conversely, if there exists a filter preserving compilation, then
A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Filtering

Hypothesis

JLK = A = B = JMK
“Filter”: set of programs F ⊂ P (syntactic criterion)

Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Conclusion

There is no filter-preserving compilation: p ∈ F ⇒ ϕ(p) ∈ F

Conversely, if there exists a filter preserving compilation, then
A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Expressiveness

L

M

A

B

L’

M’

A’

B’

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

p ∈ F ⇒ ϕ(p) ∈ F
B′ (A′

Compilation

p ∈ L′ = L ∩ F
⇒ ϕ(p) ∈M ∩ F = M ′

Canonical injection

f ∈ A′

p ∈ L′, JpK = f
q = ϕ(p) ∈M ′, JqK = f
f ∈ B′

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Expressiveness

L

M

A

B

L’

M’

A’

B’

ιϕJ•Kι

J•K

id

ϕ

J•K

ι

J•K

ι

id

p ∈ F ⇒ ϕ(p) ∈ F
B′ (A′

Compilation

p ∈ L′ = L ∩ F
⇒ ϕ(p) ∈M ∩ F = M ′

Canonical injection

f ∈ A′

p ∈ L′, JpK = f
q = ϕ(p) ∈M ′, JqK = f
f ∈ B′

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Expressiveness

L

M

A

B

L’

M’

A’

B’

ι

ϕ

J•Kι

J•K

id

ϕ

J•K

ι

J•Kιid

p ∈ F ⇒ ϕ(p) ∈ F
B′ (A′

Compilation

p ∈ L′ = L ∩ F
⇒ ϕ(p) ∈M ∩ F = M ′

Canonical injection

f ∈ A′

p ∈ L′, JpK = f
q = ϕ(p) ∈M ′, JqK = f
f ∈ B′

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Expressiveness

L

M

A

B

L’

M’

A’

B’

ι

ϕ

J•K

ι

J•K

id
ϕ

J•K

ι
J•K

ι

id

p ∈ F ⇒ ϕ(p) ∈ F
B′ (A′

Compilation

p ∈ L′ = L ∩ F
⇒ ϕ(p) ∈M ∩ F = M ′

Canonical injection

f ∈ A′

p ∈ L′, JpK = f
q = ϕ(p) ∈M ′, JqK = f
f ∈ B′

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Expressiveness

L

M

A

B

L’

M’

A’

B’

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι

J•K

ι

id

p ∈ F ⇒ ϕ(p) ∈ F
B′ (A′

Compilation

p ∈ L′ = L ∩ F
⇒ ϕ(p) ∈M ∩ F = M ′

Canonical injection

f ∈ A′

p ∈ L′, JpK = f
q = ϕ(p) ∈M ′, JqK = f
f ∈ B′

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

High Order

(2nd)

(1st)

C

C

(2nd) \CONS

(1st) \CONS

EXPtime

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = high order TRS
L = (2nd) M = (1st) F =
\CONS

J(2nd)K = C = J(1st)K
J(2nd)\CONSK = EXPtime

J(1st)\CONSK = Ptime

EXPtime 6= Ptime, hence there exists no compilation
from (2nd) to (1st) preserving \CONS.

High order programs are more expressive than first order ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

High Order

(2nd)

(1st)

C

C

(2nd) \CONS

(1st) \CONS

EXPtime

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = high order TRS
L = (2nd) M = (1st) F =
\CONS

J(2nd)K = C = J(1st)K
J(2nd)\CONSK = EXPtime

J(1st)\CONSK = Ptime

EXPtime 6= Ptime, hence there exists no compilation
from (2nd) to (1st) preserving \CONS.

High order programs are more expressive than first order ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

High Order

(2nd)

(1st)

C

C

(2nd) \CONS

(1st) \CONS

EXPtime

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = high order TRS
L = (2nd) M = (1st) F =
\CONS

J(2nd)K = C = J(1st)K
J(2nd)\CONSK = EXPtime

J(1st)\CONSK = Ptime

EXPtime 6= Ptime, hence there exists no compilation
from (2nd) to (1st) preserving \CONS.

High order programs are more expressive than first order ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

High Order

(2nd)

(1st)

C

C

(2nd) \CONS

(1st) \CONS

EXPtime

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = high order TRS
L = (2nd) M = (1st) F =
\CONS

J(2nd)K = C = J(1st)K
J(2nd)\CONSK = EXPtime

J(1st)\CONSK = Ptime

EXPtime 6= Ptime, hence there exists no compilation
from (2nd) to (1st) preserving \CONS.

High order programs are more expressive than first order ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Non-Determinism

(MPO+ND)

(MPO)

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

Pspace

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = ND first order TRS
L = (MPO+ND) M = (MPO)
F = (QI)

J(MPO+ND)K = PR = J(MPO)K
J(MPO+ND) ∩ (QI)K = Pspace
J(MPO) ∩ (QI)K = Ptime

Pspace 6= Ptime (maybe), hence there exists no compilation
from (MPO+ND) to (MPO) preserving (QI).

Non-deterministic programs are more expressive than first order
ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Non-Determinism

(MPO+ND)

(MPO)

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

Pspace

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = ND first order TRS
L = (MPO+ND) M = (MPO)
F = (QI)

J(MPO+ND)K = PR = J(MPO)K
J(MPO+ND) ∩ (QI)K = Pspace
J(MPO) ∩ (QI)K = Ptime

Pspace 6= Ptime (maybe), hence there exists no compilation
from (MPO+ND) to (MPO) preserving (QI).

Non-deterministic programs are more expressive than first order
ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Non-Determinism

(MPO+ND)

(MPO)

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

Pspace

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = ND first order TRS
L = (MPO+ND) M = (MPO)
F = (QI)

J(MPO+ND)K = PR = J(MPO)K
J(MPO+ND) ∩ (QI)K = Pspace
J(MPO) ∩ (QI)K = Ptime

Pspace 6= Ptime (maybe), hence there exists no compilation
from (MPO+ND) to (MPO) preserving (QI).

Non-deterministic programs are more expressive than first order
ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

A Generic Framework
Examples

Non-Determinism

(MPO+ND)

(MPO)

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

Pspace

Ptime

ι

ϕ

J•K

ι

J•K

id

ϕ

J•K

ι
J•K

ι

id

P = ND first order TRS
L = (MPO+ND) M = (MPO)
F = (QI)

J(MPO+ND)K = PR = J(MPO)K
J(MPO+ND) ∩ (QI)K = Pspace
J(MPO) ∩ (QI)K = Ptime

Pspace 6= Ptime (maybe), hence there exists no compilation
from (MPO+ND) to (MPO) preserving (QI).

Non-deterministic programs are more expressive than first order
ones.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

What is an Algorithm?

Solid (mathematical) theory of functions.

No good theory of algorithms
(Gurevich’s thesis: ASM ≡ algorithm).

What’s sure:

Two programs may implement the same algorithm.

Two algorithms may compute the same function.

Algorithms lay somewhere between programs and functions.

P Z C
| • | [•]

J•K
[|p|] = JpK

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

What is an Algorithm?

Solid (mathematical) theory of functions.

No good theory of algorithms
(Gurevich’s thesis: ASM ≡ algorithm).

What’s sure:

Two programs may implement the same algorithm.

Two algorithms may compute the same function.

Algorithms lay somewhere between programs and functions.

P Z C
| • | [•]

J•K
[|p|] = JpK

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

What is an Algorithm?

Solid (mathematical) theory of functions.

No good theory of algorithms
(Gurevich’s thesis: ASM ≡ algorithm).

What’s sure:

Two programs may implement the same algorithm.

Two algorithms may compute the same function.

Algorithms lay somewhere between programs and functions.

P Z C
| • | [•]

J•K
[|p|] = JpK

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

The Algorithmic Level

Programming language: P ⊃ L,M,F (syntactic)

Algorithms (?): Z Computable functions: C

Semantics: P Z C
| • | [•]

Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
JLK = A = B = JMK
Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

The Algorithmic Level

Programming language: P ⊃ L,M,F (syntactic)

Algorithms (?): Z Computable functions: C

Semantics: P Z C
| • | [•]

Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|

JLK = A = B = JMK
Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

The Algorithmic Level

Programming language: P ⊃ L,M,F (syntactic)

Algorithms (?): Z Computable functions: C

Semantics: P Z C
| • | [•]

Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
JLK = A = B = JMK

Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

The Algorithmic Level

Programming language: P ⊃ L,M,F (syntactic)

Algorithms (?): Z Computable functions: C

Semantics: P Z C
| • | [•]

Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
JLK = A = B = JMK
Filtering: L′ = L ∩ F , M ′ = M ∩ F
Breaking semantic equality: JL′K = A′) B′ = JM ′K

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Transforming algorithms

Hypothesis

JLK = A = B = JMK
JL′K = A′ 6= B′ = JM ′K
Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
|L| = X |M | = Y

Algorithm transformation: τ : X → Y

Conclusion

There is no filter-preserving transformation of algorithms:
x ∈ |F | ⇒ τ(x) ∈ |F |

Conversely, if there exists a filter preserving transformation
(incl. identity), then A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Transforming algorithms

Hypothesis

JLK = A = B = JMK
JL′K = A′ 6= B′ = JM ′K
Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
|L| = X |M | = Y

Algorithm transformation: τ : X → Y

Conclusion

There is no filter-preserving transformation of algorithms:
x ∈ |F | ⇒ τ(x) ∈ |F |

Conversely, if there exists a filter preserving transformation
(incl. identity), then A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Transforming algorithms

Hypothesis

JLK = A = B = JMK
JL′K = A′ 6= B′ = JM ′K
Algorithms respect filter: p ∈ F , q 6∈ F ⇒ |p| 6= |q|
|L| = X |M | = Y

Algorithm transformation: τ : X → Y

Conclusion

There is no filter-preserving transformation of algorithms:
x ∈ |F | ⇒ τ(x) ∈ |F |

Conversely, if there exists a filter preserving transformation
(incl. identity), then A′ = B′.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Magic Trick Again

Suppose that I have written something (an “algorithm”)
inside each bead (text? formula? drawing? . . .)

It’s written in white inside black beads, and in black inside
white beads. Hence beads of different colours (computing
different functions) necessarily have different algorithms.

I claim that beads of different size have different algorithms
(respecting the filter).

[Filtering]

There are things written in beads of the first set that are
not written in beads of the second (those in small black
beads).

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Magic Trick Again

Suppose that I have written something (an “algorithm”)
inside each bead (text? formula? drawing? . . .)

It’s written in white inside black beads, and in black inside
white beads. Hence beads of different colours (computing
different functions) necessarily have different algorithms.

I claim that beads of different size have different algorithms
(respecting the filter).

[Filtering]

There are things written in beads of the first set that are
not written in beads of the second (those in small black
beads).

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Magic Trick Again

Suppose that I have written something (an “algorithm”)
inside each bead (text? formula? drawing? . . .)

It’s written in white inside black beads, and in black inside
white beads. Hence beads of different colours (computing
different functions) necessarily have different algorithms.

I claim that beads of different size have different algorithms
(respecting the filter).

[Filtering]

There are things written in beads of the first set that are
not written in beads of the second (those in small black
beads).

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

The big picture

L

M

X

Y

A

B

L’

M’

X’

Y’

A’

B’

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

High order

(2nd)

(1st)

X

Y

C

C

(2nd) \CONS

(1st) \CONS

X’

Y’

EXPtime

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect
cons-free.

There is no transformation from high order algorithms to first
order algorithm preserving cons-free.
There are cons-free high-order algorithms with no first order
counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

High order

(2nd)

(1st)

X

Y

C

C

(2nd) \CONS

(1st) \CONS

X’

Y’

EXPtime

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect
cons-free.

There is no transformation from high order algorithms to first
order algorithm preserving cons-free.
There are cons-free high-order algorithms with no first order
counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

High order

(2nd)

(1st)

X

Y

C

C

(2nd) \CONS

(1st) \CONS

X’

Y’

EXPtime

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect
cons-free.

There is no transformation from high order algorithms to first
order algorithm preserving cons-free.
There are cons-free high-order algorithms with no first order
counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Non Determinism

(MPO+ND)

(MPO)

X

Y

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

X’

Y’

Pspace

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect QI.

There is no transformation from non-deterministic algorithms
to first order algorithm preserving Quasi-Interpretations.
There are Non-deterministic algorithms admitting a Quasi-
Interpretation with no deterministic counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Non Determinism

(MPO+ND)

(MPO)

X

Y

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

X’

Y’

Pspace

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect QI.

There is no transformation from non-deterministic algorithms
to first order algorithm preserving Quasi-Interpretations.
There are Non-deterministic algorithms admitting a Quasi-
Interpretation with no deterministic counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

What is an Algorithm?
Extending the Framework
Examples

Non Determinism

(MPO+ND)

(MPO)

X

Y

PR

PR

(MPO+ND) ∩ (QI)

(MPO) ∩ (QI)

X’

Y’

Pspace

Ptime

ι ι

| • | [•]

τ

| • | [•]

τ id

| • | [•]

ι ι ι

| • | [•]

id

ι

Algorithms
respect QI.

There is no transformation from non-deterministic algorithms
to first order algorithm preserving Quasi-Interpretations.
There are Non-deterministic algorithms admitting a Quasi-
Interpretation with no deterministic counterpart.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Future Works

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Other Examples

The framework is generic and could be applied to many
cases.

But we still need to find a good filter and prove:
JLK = JMK
JL′K 6= JM ′K

Fortunately, we have 20 years of ICC with lot of results of
this kind to use!

Linear Logic? Imperative programs? . . .

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Other Examples

The framework is generic and could be applied to many
cases.

But we still need to find a good filter and prove:
JLK = JMK
JL′K 6= JM ′K

Fortunately, we have 20 years of ICC with lot of results of
this kind to use!

Linear Logic? Imperative programs? . . .

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Cross-language comparison

Can we compare systems for imperative programs with Linear
Logic systems?

The key to the proof is that the filter is “the same” in both
cases.

When dealing with algorithms, if we have two filters F and
G, we need |F | = |G|
Especially, JF K = JGK is not sufficient.

But without knowing what an algorithm is, we cannot
prove that.

We have to find another way to circumvent this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Cross-language comparison

Can we compare systems for imperative programs with Linear
Logic systems?

The key to the proof is that the filter is “the same” in both
cases.

When dealing with algorithms, if we have two filters F and
G, we need |F | = |G|
Especially, JF K = JGK is not sufficient.

But without knowing what an algorithm is, we cannot
prove that.

We have to find another way to circumvent this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Cross-language comparison

Can we compare systems for imperative programs with Linear
Logic systems?

The key to the proof is that the filter is “the same” in both
cases.

When dealing with algorithms, if we have two filters F and
G, we need |F | = |G|
Especially, JF K = JGK is not sufficient.

But without knowing what an algorithm is, we cannot
prove that.

We have to find another way to circumvent this.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Comparing Systems for Ptime

(1st) \CONS Interp. MPO+QI

Deterministic Ptime Ptime Ptime
Non-deterministic Ptime NPtime Pspace

The three ICC systems capture the same functions.

Experiments suggest that it’s easier to write MPO+QI
programs than (1st) \CONS ones.

Adding Non-determinism reveals a jump in expressiveness.

There was more “things” (algorithms) in MPO+QI but we
need the Non-determinism to make them appear.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Comparing Systems for Ptime

(1st) \CONS Interp. MPO+QI

Deterministic

Ptime Ptime Ptime

Non-deterministic Ptime NPtime Pspace

The three ICC systems capture the same functions.

Experiments suggest that it’s easier to write MPO+QI
programs than (1st) \CONS ones.

Adding Non-determinism reveals a jump in expressiveness.

There was more “things” (algorithms) in MPO+QI but we
need the Non-determinism to make them appear.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Comparing Systems for Ptime

(1st) \CONS Interp. MPO+QI

Deterministic Ptime Ptime Ptime
Non-deterministic Ptime NPtime Pspace

The three ICC systems capture the same functions.

Experiments suggest that it’s easier to write MPO+QI
programs than (1st) \CONS ones.

Adding Non-determinism reveals a jump in expressiveness.

There was more “things” (algorithms) in MPO+QI but we
need the Non-determinism to make them appear.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Comparing Systems for Ptime

(1st) \CONS Interp. MPO+QI

Deterministic Ptime Ptime Ptime
Non-deterministic Ptime NPtime Pspace

The three ICC systems capture the same functions.

Experiments suggest that it’s easier to write MPO+QI
programs than (1st) \CONS ones.

Adding Non-determinism reveals a jump in expressiveness.

There was more “things” (algorithms) in MPO+QI but we
need the Non-determinism to make them appear.

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Chemistry

A chemical version of this:

Bonfante, Boudes, Moyen Expressive Power and Algorithms

Conclusion

Introduction
Expressive Power

Algorithms
Future Works

Other Examples
Cross-language comparison
Adding rather than filtrating

Conclusion

Generic framework.

Can tell something about algorithms, under “reasonable”
assumptions (or at least we can argue about the
assumptions).

Reuse 20 years of ICC to get more results.

Can still be extended for more interesting results?

A step toward a theory of algorithms?

Bonfante, Boudes, Moyen Expressive Power and Algorithms

	Introduction
	Motivations
	Explaining the trick

	Expressive Power
	A Generic Framework
	Examples

	Algorithms
	What is an Algorithm?
	Extending the Framework
	Examples

	Future Works
	Other Examples
	Cross-language comparison
	Adding rather than filtrating

