Interpretation methods in ICC

Jean-Yves Moyen Jean-Yves.Moyen@lipn.univ-paris13.fr

Université Paris 13 (LIPN)

November 2013

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What this talk is about

• What this is not about: Collection of all results of ICC using interpretations.

What this talk is about

- What this is not about: Collection of all results of ICC using interpretations.
- What this is (probably) about:
 - Tentative definition of "ICC".
 - From termination orderings to interpretations.
 - How interpretations help in ICC.

(日) (四) (日) (日)

Implicit Computational Complexity

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

э

ICC systems Examples Implicit complexity of programs

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

Set of programs

Set of functions

・ロト ・ 同ト ・ ヨト ・ ヨト

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

Programs

Image: A mathematical states and a mathem

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

(日)

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

Set of functions

(日)

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

- Rejected programs
 - Accepted programs

Good functions

Bad functions

(日)

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

Good functions

Bad functions

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Set of programs

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Implicit Computational Complexity

Decidable syntactic criterions for semantics properties.

A function is PTIME iff it is computed by at least one polytime program.

э

A function is PTIME iff it is computed by at least one polytime program.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A function is PTIME iff it is computed by at least one polytime program.

Image: A match a ma

A function is PTIME iff it is computed by at least one polytime program.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A function is PTIME iff it is computed by at least one polytime program.

A function is PTIME iff it is computed by at least one polytime program.

A function is PTIME iff it is computed by at least one polytime program.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ICC systems Examples Implicit complexity of programs

E

Properties of ICC Systems

J.-Y. Moyen Interpretations

ICC systems Examples Implicit complexity of programs

(日)

Properties of ICC Systems

 \mathbf{S}

ICC systems Examples Implicit complexity of programs

ICC systems Examples Implicit complexity of programs

Properties of ICC Systems

J.-Y. Moyen Interpretations

ICC systems Examples Implicit complexity of programs

Properties of ICC Systems

J.-Y. Moyen Interpretations

ICC systems Examples Implicit complexity of programs

ICC systems Examples Implicit complexity of programs

ICC systems Examples Implicit complexity of programs

Examples

• A program without loops always terminate.

크

Examples

Syntactic criterion

Semantic property

(日) (四) (日) (日) (日)

E

• A program without loops always terminate.

Examples

Syntactic criterion

Semantic property

E

• A program without loops always terminate.

Examples

Syntactic criterion

Semantic property

• A program without loops always terminate. Some total functions need loops.

Incomplete

э

Examples

Syntactic criterion

Semantic property

- A program without loops always terminate. Some total functions need loops.
- A prim. rec. program computes a prim. rec. function.

Examples

Syntactic criterion

Semantic property

- A program without loops always terminate. Some total functions need loops.
- A prim. rec. program computes a prim. rec. function.

Incomplete
Examples

Syntactic criterion

Semantic property

- A program without loops always terminate. Some total functions need loops.
- A prim. rec. **program** computes a prim. rec. **function**. Each prim. rec. **function** is computed by a prim. rec. **program**.

Extensionally complete

< ロト (四) (三) (三)

Examples

Syntactic criterion

Semantic property

- A program without loops always terminate. Some total functions need loops.
- A prim. rec. **program** computes a prim. rec. **function**. Each prim. rec. **function** is computed by a prim. rec. **program**.
- A LOOP program computes a prim. rec. function. Each prim. rec. function is computed by a LOOP program.

Extensionally complete

Examples

Syntactic criterion

Semantic property

- A program without loops always terminate. Some total functions need loops.
- A prim. rec. **program** computes a prim. rec. **function**. Each prim. rec. **function** is computed by a prim. rec. **program**.
- A LOOP program computes a prim. rec. function. Each prim. rec. function is computed by a LOOP program.

Extensionally complete

(日) (四) (日) (日)

Complexity of a Function

- Each program has a complexity.
- Each function is computed by several programs.
- The complexity of a function is the smallest complexity of programs computing it.

(日) (四) (日) (日)

Complexity of a Function

- Each program has a complexity.
- Each function is computed by several programs.
- The complexity of a function is the smallest complexity of programs computing it.

Example (sorting):

- Insertion sort: $O(n^2)$.
- Quick sort: $O(n \log(n))$.
- Sorting function: $O(n \log(n))$.

< ロト (四) (三) (三)

Implicit Complexity

- Each program has a complexity.
- Each program computes one function.
- The complexity of the function may be smaller than the complexity of the program.

Implicit Complexity

- Each program has a complexity.
- Each program computes one function.
- The complexity of the function may be smaller than the complexity of the program.

Example (insertion sort):

- Insertion sort: $O(n^2)$, sorting function: $O(n \log(n))$.
- Explicit complexity: $O(n^2)$.
- Implicit complexity: $O(n \log(n))$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

First Order Constructors TRS

Three disjoint sets of function $(\mathbf{f} \in \mathcal{F})$, constructors $(\mathbf{c} \in \mathcal{C})$ and variables $(x \in \mathcal{V})$;

・ロト ・ 同ト ・ ヨト ・ ヨト

First Order Constructors TRS

Three disjoint sets of function $(\mathbf{f} \in \mathcal{F})$, constructors $(\mathbf{c} \in \mathcal{C})$ and variables $(x \in \mathcal{V})$;

No defined symbols in patterns.

First Order Constructors TRS

Three disjoint sets of function $(\mathbf{f} \in \mathcal{F})$, constructors $(\mathbf{c} \in \mathcal{C})$ and variables $(x \in \mathcal{V})$;

No defined symbols in patterns.

A program is a set of rules with a main symbol.

・ロト ・ 同ト ・ ヨト ・ ヨト

Ordering on terms, strictly monotonous and well-founded.

< ロ > (同 > (回 > (回 >))

3

Termination Orderings

Ordering on terms, strictly monotonous and well-founded.

Strict monotonicity: $t_i < t'_i$ implies $f(\ldots, t_i, \ldots) < f(\ldots, t'_i, \ldots)$.

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

・ロト ・ 同ト ・ ヨト ・ ヨト

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

・ロト ・ 同ト ・ ヨト ・ ヨト

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

 $f(\ldots, redex, \ldots)$ reduces to $f(\ldots, contractum, \ldots)$.

(日) (四) (日) (日) (日)

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(..., redex, ...) reduces to f(..., contractum, ...). redex > contractum because the rules are ordered.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

$$\begin{split} & \texttt{f}(\ldots, \texttt{redex}, \ldots) \text{ reduces to } \texttt{f}(\ldots, \texttt{contractum}, \ldots). \\ & \texttt{redex} > \texttt{contractum} \text{ because the rules are ordered.} \\ & \texttt{f}(\ldots, \texttt{redex}, \ldots) > \texttt{f}(\ldots, \texttt{contractum}, \ldots) \text{ by monotonicity.} \end{split}$$

《曰》 《聞》 《臣》 《臣》

Ordering on terms, strictly monotonous and well-founded.

Definition

A program admit a termination ordering > iff for each rule $l \rightarrow r$, we have l > r (for each substitution).

Theorem (Dershowitz)

A program with a termination ordering terminates uniformly.

Sketch of proof

f(..., redex, ...) reduces to f(..., contractum, ...). redex > contractum because the rules are ordered. f(..., redex, ...) > f(..., contractum, ...) by monotonicity. No infinite reduction by noetherianity.

《曰》 《聞》 《臣》 《臣》

Lemma

For each uniformly terminating system, there exists a termination ordering.

< ロト < 同ト < ヨト < ヨト

Lemma

For each uniformly terminating system, there exists a termination ordering.

Hint of proof

t>s iff $t {\stackrel{+}{\rightarrow}} s$

< ロト < 同ト < ヨト < ヨト

Lemma

For each uniformly terminating system, there exists a termination ordering.

Hint of proof

- $t>s \text{ iff } t \xrightarrow{+} s$
 - Compatible with the rules by construction.

•
$$l \to r$$
 implies $l > r$.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

. ⊒ . ⊳

Lemma

For each uniformly terminating system, there exists a termination ordering.

Hint of proof

- $t > s \text{ iff } t \xrightarrow{+} s$
 - Compatible with the rules by construction.
 - Monotonic by definition of redex/contractum.

•
$$l \to r$$
 implies $l > r$.

• $f(\ldots, \operatorname{redex}, \ldots) \to f(\ldots, \operatorname{contractum}, \ldots).$

イロト イヨト イヨト イヨト

《曰》 《聞》 《臣》 《臣》

Specific Termination Orderings

Lemma

For each uniformly terminating system, there exists a termination ordering.

Hint of proof

- $t>s \text{ iff } t {\xrightarrow{+}} s$
 - Compatible with the rules by construction.
 - Monotonic by definition of redex/contractum.
 - Well-founded ... because the system terminates!
 - $l \to r$ implies l > r.
 - $f(\ldots, \operatorname{redex}, \ldots) \to f(\ldots, \operatorname{contractum}, \ldots).$

• . . .

Generic Termination Orderings

- The existence of a termination ordering is undecidable.
- Having different orderings for each system is inconvenient.

3

Generic Termination Orderings

- The existence of a termination ordering is undecidable.
- Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still be able to prove termination of many systems.

・ロト ・ 同ト ・ ヨト ・ ヨト

Generic Termination Orderings

- The existence of a termination ordering is undecidable.
- Having different orderings for each system is inconvenient.

Problem

Find a termination ordering independently of the TRS but still be able to prove termination of many systems.

Idea (RPO in a nutshell)

- If f calls g and g never calls f, then going from f to g is a step toward termination.
- During a recursive call, something must decrease inside the arguments.

< ロ > (同 > (回 > (回 >))

(日) (四) (三) (三) (三)

æ

Recursive Path Ordering

$$t = \mathbf{f}(t_1, \cdots, t_n) \prec_{rpo} \mathbf{g}(s_1, \ldots, s_i, \ldots, s_m) = s$$

Recursive Path Ordering

$$t = \mathbf{f}(t_1, \cdots, t_n) \prec_{rpo} \mathbf{g}(s_1, \ldots, s_i, \ldots, s_m) = s$$

《曰》 《聞》 《臣》 《臣》

E

Terms Rewriting Systems Termination Orderings Recursive Path Ordering

Recursive Path Ordering

$$t = \mathbf{f}(t_1, \cdots, t_n) \prec_{rpo} \mathbf{g}(s_1, \ldots, s_i, \ldots, s_m) = s$$

< \mathcal{F} ordering of $\mathcal{F} \cup \mathcal{C}$.

$$\frac{\exists i, t \preceq_{rpo} s_i}{t \prec_{rpo} s}$$

$$\frac{\forall i, t_i \prec_{rpo} \mathsf{g}(s_1, \cdots, s_m) \quad \mathbf{f} <_{\mathcal{F}} \mathsf{g}}{\mathbf{t} \prec_{rpo} s}$$

크

Recursive Path Ordering

$$t = \mathbf{f}(t_1, \cdots, t_n) \prec_{rpo} \mathbf{g}(s_1, \ldots, s_i, \ldots, s_m) = s$$

< \mathcal{F} ordering of $\mathcal{F} \cup \mathcal{C}$.

$$\frac{\exists i, t \preceq_{rpo} s_i}{t \prec_{rpo} s}$$

$$\frac{\forall i, t_i \prec_{rpo} \mathsf{g}(s_1, \cdots, s_m) \quad f <_{\mathcal{F}} \mathsf{g}}{t \prec_{rpo} s}$$

$$\frac{\forall i, t_i \prec_{rpo} s \quad \{t_1, \cdots, t_n\} \prec_{rpo}^r \{s_1, \cdots, s_n\}}{\mathbf{t} \prec_{rpo} s} \quad \mathbf{f} \approx_{\mathcal{F}} \mathbf{g}$$

크

MPO, LPO, PPO

Comparing arguments of recursive calls.

$$\frac{\forall i, t_i \prec_{rpo} s \quad \{t_1, \cdots, t_n\} \prec_{rpo}^r \{s_1, \cdots, s_n\} \quad \mathbf{f} \approx_{\mathcal{F}} \mathbf{g}}{t \prec_{rpo} s}$$

E

MPO, LPO, PPO

Comparing arguments of recursive calls.

$$\frac{\forall i, t_i \prec_{rpo} s \quad \{t_1, \cdots, t_n\} \prec_{rpo}^r \{s_1, \cdots, s_n\} \quad \mathbf{f} \approx_{\mathcal{F}} \mathbf{g}}{t \prec_{rpo} s}$$

- MPO: multiset ordering.
- LPO: lexicographic ordering.
- PPO: product ordering.

(日) (四) (日) (日)

MPO, LPO, PPO

Comparing arguments of recursive calls.

$$\frac{\forall i, t_i \prec_{rpo} s \quad \{t_1, \cdots, t_n\} \prec_{rpo}^r \{s_1, \cdots, s_n\} \quad \mathbf{f} \approx_{\mathcal{F}} \mathbf{g}}{t \prec_{rpo} s}$$

- MPO: multiset ordering.
- LPO: lexicographic ordering.
- PPO: product ordering.

Exercise

Prove that they all are termination orderings...

E

Implicit Complexity

Theorem (Hofbauer, BMM)

 $PPO \equiv MPO \equiv PRIMREC.$

Implicit Complexity

Theorem (Hofbauer, BMM)

 $PPO \equiv MPO \equiv PRIMREC.$

- Systems terminating by PPO/MPO compute all the PRIMREC functions (extensional completeness, easy).
- Systems terminating by PPO/MPO compute only the PRIMREC functions (soundness, hard).
- No intensional completeness (quick sort).

・ロト ・ 同ト ・ ヨト ・ ヨト
Implicit Complexity

Theorem (Hofbauer, BMM)

 $PPO \equiv MPO \equiv PRIMREC.$

- Systems terminating by PPO/MPO compute all the PRIMREC functions (extensional completeness, easy).
- Systems terminating by PPO/MPO compute only the PRIMREC functions (soundness, hard).
- No intensional completeness (quick sort).

Theorem (Weierman)

 $LPO \equiv Multiple \ recursive \ functions.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Interpretations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(日) (周) (日) (日) (日)

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove noetherianity).

Idea: instead of trying to build orders on terms (complicated structure), try to interpret terms in a well known ordered set.

 $\llbracket \bullet \rrbracket : \mathcal{T} \to (A, <) \text{ and then, } t \prec s \text{ iff } \llbracket t \rrbracket < \llbracket s \rrbracket$

(日) (周) (日) (日) (日)

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove noetherianity).

Idea: instead of trying to build orders on terms (complicated structure), try to interpret terms in a well known ordered set.

 $[\![\bullet]\!]:\mathcal{T}\to (A,<)$ and then, $t\prec s$ iff $[\![t]\!]<[\![s]\!]$

- (A, <) is well founded.
- $\llbracket t \rrbracket > \llbracket t' \rrbracket$ implies $\llbracket \texttt{f}(\ldots, t, \ldots) \rrbracket > \llbracket \texttt{f}(\ldots, t', \ldots) \rrbracket$.
- For each rule $l \to r$, we have $\llbracket l \rrbracket > \llbracket r \rrbracket$.

(日) (周) (日) (日) (日)

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove noetherianity).

Idea: instead of trying to build orders on terms (complicated structure), try to interpret terms in a well known ordered set.

 $[\![\bullet]\!]:\mathcal{T}\to (A,<)$ and then, $t\prec s$ iff $[\![t]\!]<[\![s]\!]$

- (A, <) is well founded.
- $\llbracket t \rrbracket > \llbracket t' \rrbracket$ implies $\llbracket f(\ldots, t, \ldots) \rrbracket > \llbracket f(\ldots, t', \ldots) \rrbracket$.
- For each rule $l \to r$, we have $\llbracket l \rrbracket > \llbracket r \rrbracket$.

イロト イロト イヨト イヨト 三日

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove noetherianity).

Idea: instead of trying to build orders on terms (complicated structure), try to interpret terms in a well known ordered set.

 $[\![\bullet]\!]:\mathcal{T}\to (A,<)$ and then, $t\prec s$ iff $[\![t]\!]<[\![s]\!]$

- (A, <) is well founded.
- [t] > [t'] implies [f(...,t,...)] > [f(...,t',...)].
- For each rule $l \to r$, we have $\llbracket l \rrbracket > \llbracket r \rrbracket$.

Easy Use compositionality

Principle of Interpretations

Termination orderings are powerful but hard to invent (prove noetherianity).

Idea: instead of trying to build orders on terms (complicated structure), try to interpret terms in a well known ordered set.

 $[\![\bullet]\!]:\mathcal{T}\to (A,<)$ and then, $t\prec s$ iff $[\![t]\!]<[\![s]\!]$

- (A, <) is well founded.
- $\llbracket t \rrbracket > \llbracket t' \rrbracket$ implies $\llbracket f(\ldots, t, \ldots) \rrbracket > \llbracket f(\ldots, t', \ldots) \rrbracket$.
- For each rule $l \to r$, we have $\llbracket l \rrbracket > \llbracket r \rrbracket$.

Easy Use compositionality

< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (1)

3

Compositional Interpretations

- For each symbol f of arity n, define a function $[\![f]\!]: A^n \to A$.
- Extend recursively $\llbracket f(t_1, \cdots, t_n) \rrbracket = \llbracket f \rrbracket (\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket).$
- Define $t \prec s$ iff $\llbracket t \rrbracket < \llbracket s \rrbracket$.

(日) (四) (日) (日) (日)

Compositional Interpretations

- For each symbol f of arity n, define a function $\llbracket f \rrbracket : A^n \to A.$
- Extend recursively $\llbracket f(t_1, \cdots, t_n) \rrbracket = \llbracket f \rrbracket (\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket).$
- Define $t \prec s$ iff $\llbracket t \rrbracket < \llbracket s \rrbracket$.

 $\llbracket f \rrbracket$ has subterm property if $\llbracket f \rrbracket(X_1, \cdots, X_n) \ge X_i$.

Lemma

If each $\llbracket f \rrbracket$ is monotonic and has subterm property, then \prec is monotonic.

・ロト ・四ト ・ヨト ・ヨト

Compositional Interpretations

- For each symbol f of arity n, define a function $\llbracket f \rrbracket : A^n \to A.$
- Extend recursively $\llbracket f(t_1, \cdots, t_n) \rrbracket = \llbracket f \rrbracket (\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket).$
- Define $t \prec s$ iff $\llbracket t \rrbracket < \llbracket s \rrbracket$.

 $\llbracket f \rrbracket$ has subterm property if $\llbracket f \rrbracket(X_1, \cdots, X_n) \ge X_i$.

Lemma

If each $[\![f]\!]$ is monotonic and has subterm property, then \prec is monotonic.

Ackermann

Ackermann's function admit an interpretation over the ordinal numbers.

・ロト ・聞ト ・ヨト ・ヨト

Polynomial Interpretations

- Polynomial interpretation: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ is a polynomial (with positive integer coefficients).
- A TRS admits a polynomial interpretation if $[\![l]\!] > [\![r]\!].$ It defines a termination ordering.
- A TRS admitting a polynomial interpretation terminates uniformly.

Polynomial Interpretations

- Polynomial interpretation: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ is a polynomial (with positive integer coefficients).
- A TRS admits a polynomial interpretation if $[\![l]\!] > [\![r]\!].$ It defines a termination ordering.
- A TRS admitting a polynomial interpretation terminates uniformly.

Exponential

$$\begin{array}{rcl} \mathbf{db}(\mathbf{z}) & \to & \mathbf{z} \\ \mathbf{db}(\mathbf{S}(x)) & \to & \mathbf{S}'(\mathbf{S}'(\mathbf{db}(x))) \\ & & \mathbf{exp}(\mathbf{z}) & \to & \mathbf{S}(\mathbf{z}) \\ & & & \mathbf{exp}(\mathbf{S}(x)) & \to & \mathbf{db}(\mathbf{exp}(x)) \end{array}$$
$$\llbracket \mathbf{z} \rrbracket = 1 \qquad \llbracket \mathbf{S} \rrbracket (X) = 2X + 4 \qquad \llbracket \mathbf{S}' \rrbracket (X) = X + 1 \\ \llbracket \mathbf{db} \rrbracket (X) = 2X + 1 \qquad \llbracket \mathbf{exp} \rrbracket (X) = X + 2 \end{array}$$

< ロト < 同ト < ヨト < ヨト

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize Exp2TIME.

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize Exp2TIME.

Where does the exponential come from? $\llbracket \mathbf{S} \rrbracket(X) = 2X \text{ hence } \llbracket \mathbf{S}^n(\mathbf{z}) \rrbracket = 2^n$ $\llbracket \mathbf{S} \rrbracket(X) = X^3, \llbracket \mathbf{z} \rrbracket = 2 \text{ hence } \llbracket \mathbf{S}^n(\mathbf{z}) \rrbracket = 2^{3^n}$

(日) (四) (日) (日) (日)

Polynomial Interpretations

Theorem (BCMT)

The TRS admitting a polynomial interpretation characterize Exp2TIME.

Where does the exponential come from? $\llbracket \mathbf{S} \rrbracket(X) = 2X \text{ hence } \llbracket \mathbf{S}^n(\mathbf{z}) \rrbracket = 2^n$ $\llbracket \mathbf{S} \rrbracket(X) = X^3, \llbracket \mathbf{z} \rrbracket = 2 \text{ hence } \llbracket \mathbf{S}^n(\mathbf{z}) \rrbracket = 2^{3^n}$

Observation

The interpretation of constructors is crucial for complexity.

《曰》 《聞》 《臣》 《臣》

Interpretations of Constructors

The interpretation of a symbol is

- Additive: $\llbracket f \rrbracket(X_1, \cdots, X_n) = \sum X_i + a$
- Multiplicative: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ has degree 1.
- Polynomial: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ is any polynomial.

イロト 不得下 イヨト イヨト 二日

Interpretations of Constructors

The interpretation of a symbol is

- Additive: $\llbracket f \rrbracket(X_1, \cdots, X_n) = \sum X_i + a$
- Multiplicative: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ has degree 1.
- Polynomial: $\llbracket f \rrbracket(X_1, \cdots, X_n)$ is any polynomial.

Theorem (BCMT)

Depending on the interpretation of constructors, the TRS admitting a polynomial interpretation characterize:

- Additive \Rightarrow PTIME.
- $Multiplicative \Rightarrow EXPTIME.$
- $Polynomial \Rightarrow Exp2TIME.$

э

Interpretations are too large

Smallest polynomial interpretation for addition?

$$\operatorname{add}(\mathbf{z}, y) \to y$$

 $\operatorname{add}(\mathbf{S}(x), y) \to \mathbf{S}(\operatorname{add}(x, y))$

э

Interpretations are too large

Smallest polynomial interpretation for addition?

$$\begin{array}{rcl} \operatorname{add}(\mathbf{z},y) & \to & y \\ \operatorname{add}(\mathbf{S}(x),y) & \to & \mathbf{S}(\operatorname{add}(x,y)) \end{array}$$
$$\llbracket \mathbf{z} \rrbracket = 1 \quad \llbracket \mathbf{S} \rrbracket(X) = X + 1 \qquad \llbracket \operatorname{add} \rrbracket(X,Y) = 2X + Y \end{array}$$

<ロ> (日) (日) (日) (日) (日)

Interpretations are too large

Smallest polynomial interpretation for addition?

$$\begin{aligned} & \operatorname{add}(\mathbf{z}, y) \to y \\ & \operatorname{add}(\mathbf{S}(x), y) \to \mathbf{S}(\operatorname{add}(x, y)) \end{aligned}$$
$$\llbracket \mathbf{z} \rrbracket = 1 \quad \llbracket \mathbf{S} \rrbracket(X) = X + 1 \qquad \llbracket \operatorname{add} \rrbracket(X, Y) = 2X + Y \end{aligned}$$

If we take the more natural $\llbracket add \rrbracket(X,Y) = X + Y$, then the second rule is not strictly decreasing: $\llbracket add(\mathbf{S}(x),y) \rrbracket = X + Y + 1 = \llbracket \mathbf{S}(add(x,y)) \rrbracket$

3

Quasi Interpretation

- We relax the condition on rules: $(l) \ge (r)$.
- Termination is not assured: $f(x) \to f(x)$. We need an extra termination proof.

Quasi Interpretation

- We relax the condition on rules: $(l) \ge (r)$.
- Termination is not assured: $f(x) \to f(x)$. We need an extra termination proof.
- But a size bound is still assured: $t \xrightarrow{!} v$ implies $(t) \ge (v)$.
- Hence, if (*t*) is polynomial (in the inputs), all the value handled during reduction also have polynomial size.

Quasi Interpretation

- We relax the condition on rules: $(l) \ge (r)$.
- Termination is not assured: $f(x) \to f(x)$. We need an extra termination proof.
- But a size bound is still assured: $t \xrightarrow{!} v$ implies $(t) \ge (v)$.
- Hence, if (*t*) is polynomial (in the inputs), all the value handled during reduction also have polynomial size.

Theorem (BMM)

 $MPO+QI \equiv \text{Ptime}$

TRS terminating by MPO and admitting an additive QI characterize PTIME.

э

Example: Longest Common Subsequence

《日》 《御》 《글》 《글》 - 글

Example: Longest Common Subsequence

$$\begin{array}{rcl} & \mathbf{lcs}(x,\epsilon) & \to & \mathbf{z} \\ & & \mathbf{lcs}(\epsilon,y) & \to & \mathbf{z} \\ & & \mathbf{lcs}(\mathbf{i}(x),\mathbf{i}(y)) & \to & \mathbf{S}(\mathbf{lcs}(x,y)) \\ & & \mathbf{lcs}(\mathbf{i}(x),\mathbf{j}(y)) & \to & \max(\mathbf{lcs}(x,\mathbf{j}(y)),\mathbf{lcs}(\mathbf{i}(x),y)) \end{array}$$

(lcs)(X,Y) = (max)(X,Y) = max(X,Y) No interpretation.

- Explicit complexity: $O(2^n)$.
- Implicit complexity: $O(n^2)$.
- We can use memoisation (automated dynamic programming) to transform the program and reach the good complexity.
- Better expressivity than interpretations, but the method is far from intensional completeness (divide and conquer algorithms).

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Conclusion

- Implicit computational complexity: syntactic criterions for semantic properties.
- Dream usage: certified compilation, proof carrying code.
- Proofs are hard but many results have been obtained in the past 20 years.
- Interpretation methods give a guideline for finding new characterizations.
- Interpretations are not restricted to TRS.
- Getting close to intensional completeness is extremely hard.

<ロ> (日) (日) (日) (日) (日)