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Reference machines

Machines on graph structures

Kolmogorov-Uspensky (63) and Schönhage (80):
The "tape" is a finite connected graph with an active node.
Instructions:

1 add a new node together with an edge between the active node
and the new one,

2 remove a node and the edges incident to it,
3 add an edge,
4 remove an edge between two existing nodes,
5 halt.

Each instruction creates a next configuration by modifying the input
graph structure.
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Reference machines

Reference machines

Tarjan (1977)
A reference machine consists of

a memory
a finite numbers of registers.
the memory is a finite set of records. Each record is a finite
number of items identified by a name. All records are identical in
structure.

Related to linking automaton of Knuth (1968).

Set union

while ( q 6= nil ) { save := next ( q ) ;
parent ( q ) := r ;
next ( q ) := next ( r ) ;
next ( r ) := q ;
q := save }
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Computing over graph structures

Dynamic data structures

A Graph Structure is
a set V of vertices,
a set D of data,
a graph vocabulary Σ with 2 interpretations:
Edge function:
The interpretation of f ∈ Σ is a partial fS : V → V ∪ {nil}

dom(fS) = {a | fS(a) 6= nil}
fS is a partial function over V

Data function:
The interpretation of f ∈ Σ is fS : V → D
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Computing over graph structures

Examples of Structures

Linked lists:
An edge function suc and a data function key
Two data constants 1, 0 to represent binary words.

Directed graphs of arity d:
d edge functions e1, . . . , ed

the out-degree of a vertex is ≤ d
the in-degree is unbounded
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Computing over graph structures

Dynamic data structures in real life

In C

typedef struct Ce l l {
i n t key ;
struct Ce l l ∗suc ;

} TypeCel l ;
typedef struct Ce l l ∗ L i s t ;

also similar to objects . . .

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 9 / 38



Computing over graph structures

Syntax of simple while imperative language

Expressions:

V ∈ Vertex ::= X | nil | v | f(V )
D ∈ Data ::= Y | d | g(V )
B ∈ Boolean ::= V = V | D = D | ¬(B) | R(E1 . . .En)

A skeletal imperative language, which supports pointers:

P ∈ Prg ::= X :=V | Y :=D
| f(X ):=V | g(X ):=D
| new(X )
| skip | P; P
| if (B) {P} {P}
| while (B) {P}
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Semantics

Evolving structures

A structure S has a vertex set V and a data set D.
Let σ be a store which assigns a vertex of V, a data of D or nil to
variables.

If we run an instruction f(X ):=V on a structure S,
it evolves to the structure S ′ = S[f(σ(X ))←v ]

If we run an instruction New(X ) on a structure S, it evolves to S ′
s.t. V ′ = V ∪ {u} and u 6∈ V.
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Semantics

Copy a list in reverse orders

y = n i l ;
while ( x 6= n i l )

{ z := y ;
New( y ) ;
suc ( y ) : = z ;
x :=suc ( x ) }

When a New command is executed,

We pick up a free vertex u (from a reserve)
The variable X points to this new vertex u.
The vertex domain increases.
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Semantics

Runtime

A configuration is a couple (S, µ) consisting of
a structure S and of a store µ.

A computation is a sequence of configurations:

(S0, σ0)⇒ (S1, σ1)⇒ . . .⇒ (Sn, σn)

Runtime:

TimeP(S0, µ0) = n

A program P is running in polynomial time if

∀(S, µ) TimeP(S, µ) ≤ k · |S|k

where |S| is the cardinal of the vertex-universe V.
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Semantics

Tarjan’s register machines

Tarjan (1977)
A reference machine consists of

a memory
a finite numbers of registers.
the memory is a finite set of records. Each record is a finite
number of items identified by a name. All records are identical in
structure.

Memory is a graph and the control consists in pointers on nodes

Proposition
Pure reference machines compute while programs with update and
new commands, and conversely.
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Semantics

Abstract State Machines

Gurevich (1993)
a vocabulary Σ with static and dynamic names
a state is a structure (algebra) over Σ on a base set.
programs are simultaneous structure updates
a run is a sequence of states (evolving algebras)

To create a new element, there is a Reserve
(1) The element is there, but not used, e.g. a Turing machine has an

infinite tape
(2) The element is created, e.g. Gandy’s formalization of machines
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Semantics

Questions

What is the domain of computation ?
Free algebra, Abstract (Chuch) algebra
First order structures like graphs

Does a domain of computation evolve ?
Where does come from new element ?

What is the address space ?
How to restrict computational complexity ?

By restricting the program syntax
By typing programs
By analyzing the information flow

Is the restriction complete for a complexity class ?
What’s about lower bound
What’s about modifying programs
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Semantics

A partial matrix of ICC models

Model Domain Evolving State Space Expr. Restrict.
TM Tapes No Infinite Turing

complete
Pointer Graphs Yes Reserve Turing
machines complete
ICC Church No Ptime various

algebra
Hoffman Graphs No polynomially ⊆ syntactic
Shöpp bounded Logspace
Jones Trees No polynomially Logspace syntactic
Life-cons
* Graphs No polynomially Logspace syntactic
* Graphs Yes polynomially Ptime syntactic

New types
* Graphs New polynomially Ptime syntactic

update types
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Characterization of log-space

Log-space computation

A program P over graph-structures is a jumping-program if it uses no
edge update and no new instruction.

Theorem

A language is accepted by a jumping-program iff it is decidable in
LOGSPACE.

The proof is based on Jones cons-free imperative programming
language WHILE\Cons.

Hofmann and Schöpp introduced pure pointer programs over static
graph-structures.
See also Jumping automaton on graphs (JAG) of Cook & Rackoff
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Data flow analysis
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Data flow analysis

Program ramification

Program tiering or ramification, has been introduced by Bellantoni &
Cook’92 and Leivant’94.

Atomic types are elements of a lattice T = (T ,�,0,∨,∧)

Expression are typed thus:

Γ(X ) = α

Γ,∆ ` X : α

α→ β ∈ ∆(f) Γ,∆ ` V : α

Γ,∆ ` f(V ) : β

Types of an edge or a data function f satisfies
Stable all types of f are of the form α→ α,

Reducing all types of f are of the form α→ β,
with β ≺ α,

As a result, there is a downward information flow
and no upward information flow!
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Data flow analysis

Typing rules for explicit information flows

Edge modification

Γ,∆ ` X : α Γ,∆ ` V : α

Γ,∆ ` X :=V : α

Γ,∆ ` f(X ) : α Γ,∆ ` V : α

Γ,∆ ` f(X ):=V : α

Vertices are created at tier 0:

Γ,∆ ` X : 0

Γ,∆ ` new(X ) : 0
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Data flow analysis

Typing rules for implicit information flows

Γ,∆ ` B : α Γ,∆ ` P : α
0 ≺ α

Γ,∆ ` while(B){P} : α

Γ,∆ ` P : α Γ,∆ ` P ′ : β

Γ,∆ ` P ′ ; P ′ : α ∨ β

Γ,∆ ` B : α Γ,∆ ` Pi : α

Γ,∆ ` if (B){P0}{P1} : α
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Data flow analysis

Copy a list in reverse orders

y = n i l ;
while ( x 6= n i l )

{ z := y ;
New( y ) ;
suc ( y ) : = z ;
x :=suc ( x ) }

Typing of copy

y0 = n i l : 0 ;
while ( x1 6= n i l )

{ z0 := y0 : 0 ;
New( y0 ) : 0 ;
suc ( y0 ) : = z0 : 0 ;
x1 := suc ( x1 ) : 1 } : 1
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Data flow analysis

Multiplication

v1 := s t a r t 1 : 1 ;
while ( u1 6= n i l )

{ v1 := s t a r t 1 : 1 ;
while ( v1 6= n i l )

{ v1 := suc ( v1 ) : 1 ;
. . . } : 1
u1 := suc ( u1 ) : 1 } : 1

Simulate a polynomial Turing Machine.
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Data flow analysis

Secure information flow

Theorem (Non-Interference - informal)
In a computation of a well-typed program, the graph structures
accessible by tier α variables does not modify graph structures, which
are just accessible by higher tier β variables, if α < β.
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Data flow analysis

Secure information flow

An information flow is defined by a lattice (S,≤) where S is a finite set
of Security Classes.

Unclassified < Confidential < Secret

Volpano, Smith and Irvine (1996)
A secure flow typing for While programs which is sound wrt a
security model.
A confidential values can not leak to an unclassified variable.

Intuition
Relations between non-interference, information flow and complexity
(see Lics’11)
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Data flow analysis

Information flow : two points of view

Security view Complexity view
A lattice denotes a security policy A lattice denotes

the data ramification

Types for secure flow analysis Types for complexity flow analysis

Integrity Downward flows are allowed

Non-interference Values of tier 0 are obtained
by iterating on tier 1 values

Declassification A value of tier 0 may be
upgraded safely to tier 1
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Characterization of Ptime

Stationary loops

A loop is stationary of tier α if no f of type α→ α is modified therein.

Tree insertion in binary search trees

i f ( x1 = n i l ) then { x1 :=T : 1 ; }
else {

while ( ( x1 6= n i l ) and ( key (T1 ) 6= key ( x1 ) ) )
{ i f ( key (T1 ) < key ( x1 ) )

then { p1 := x1 ; x1 := l e f t ( x1 ) 1 }
else { p1 := x1 ; x1 := r ight ( x1 ) 1 }

} : 1 ;
i f ( key (T1 ) < key ( p1 ) )

then { l e f t ( p1 ) := T1 : 1 }
else { r ight ( p1 ) : = T1 : 1 }
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Characterization of Ptime

Tightly-modifying loops

A function f is probed if it occurs either in some assignment X := V or
in the guard of a loop or a branching command.

Set union

while ( q1 6= nil ) 1 { save1 := next ( q1 ) : 1 ;
parent ( q1 ) := r 1 : 1 ;
next ( q1 ) := next ( r 1 ) : 1 ;
next ( r 1 ) := q1 : 1 ;
q1 := save1 : 1 }

A loop is tightly-modifying if it has modified functions of type α→ α,
but at most one of those is also probed.
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Characterization of Ptime

Ptime characterization

A program P is tightly-ramifiable if it is well-typed and each loop of P is
stationary or tightly-modifying

Theorem

A function over graph-structures is computable in polynomial time iff it
is computed by a terminating and tightly-ramifiable program.
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Characterization of Ptime

It is well typed but val is modified and both suc and val are probed:

An exponential-time program

u1 := head1 : 1 ;
while ( u1 6= n i l )

{ i f ( val ( u ) == 1)1 )
then { val ( u ) : = 0 ; u :=suc ( u ) } : 1

else { val ( u ) : = 1 ; u := head } : 1 } : 1
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Characterization of Ptime

Proof : Non-Interference

Say (S∆, σΓ) disregards vertices that are not reachable from some
variable of tier 1 using edge functions of type (1→ 1).

Lemma
Suppose Γ,∆ ` P : α, and S, σ |= P ⇒ S ′, σ′ |= P ′.
There is a configuration (S ′′, σ′′) such that
1) S∆, σΓ |= P ⇒ S ′′, σ′′ |= P ′,
2) and (S ′′∆, σ′′Γ) = (S ′∆, σ′Γ).
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Characterization of Ptime

Proof : Number of configurations is polynomially bounded

Lemma
Assume that Γ,∆ ` P : α, and P is tightly-modifying.
There is a k > 0 such that if S, σ |= P (⇒)t S ′, σ′ |= P ′ then
t < k + |S|k .

Let S be a digraph of out-degree 1. We say that a set of vertices C
generates S if every vertex in S is reachable by a path starting at C.

Lemma
The number (up to isomorphism) of digraphs with n vertices, and a
generator of size k, is ≤ n2k2

.
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Characterization of Ptime

Adding recursion

Augmenting our language with linear recursion

Search of a path in a graph

Proc search ( v1 ,w1 ) )
{ i f ( v=w) 1 return t r ue : 1 ;
v i s i t e d ( v ) := t rue : 1 ;
f o r a l l t 1 i n A d j L i s t ( v )
{ i f ( v i s i t e d ( t ) 1= f a l s e )

i f ( search ( t ,w) 1= t rue ) return t r ue : 1 ; }
return f a l s e : 1 ; }

Typing rules where 0 ≺ α:

Γ,∆ ` X : α Γ,∆ ` Ei : α

Γ,∆ ` X = F (E1, . . . ,Ei) : α

Γ,∆ ` E : α

Γ,∆ ` returnE : α

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 37 / 38



Characterization of Ptime

Thanks !
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