Evolving graph structures, non-interference, and

complexity

Jean-Yves Marion
Joint work with Daniel Leivant
(ICALP 2013)

Université de Lorraine
Loria

November, 7th 2013

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

1/38

Outline

0 Reference machines

e Computing over graph structures
9 Semantics

0 Characterization of log-space

e Data flow analysis

e Characterization of Ptime

Evolving graphs, non-interference, complexity November, 7th 2013 2/38

Reference machines

Outline

0 Reference machines

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 3/38

Reference machines

Machines on graph structures

Kolmogorov-Uspensky (63) and Schénhage (80):

The "tape" is a finite connected graph with an active node.
Instructions:

@ add a new node together with an edge between the active node
and the new one,

©@ remove a node and the edges incident to it,
© add an edge,

© remove an edge between two existing nodes,
Q halt.

Each instruction creates a next configuration by modifying the input
graph structure.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 4/38

Reference machines

Reference machines

Tarjan (1977)

A reference machine consists of
@ a memory
@ a finite numbers of registers.

@ the memory is a finite set of records. Each record is a finite
number of items identified by a name. All records are identical in
structure.

Related to linking automaton of Knuth (1968).

Set union

while (g #nil) {save := next(q);

parent(q) = r;
next(q) := next(r);
next(r) = Qq;

g := save}

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 5/38

Computing over graph structures

Outline

e Computing over graph structures

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 6/38

Dynamic data structures

A Graph Structure is
@ aset V of vertices,
@ aset D of data,

@ a graph vocabulary ¥ with 2 interpretations:
Edge function:
The interpretation of f € ¥ is a partial fs : V — V U {nil}
o dom(fs) ={a|fs(a) # nil}
e fs is a partial function over V
Data function:
The interpretation of f e X isfs: vV — D

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 7138

Computing over graph structures

Examples of Structures

Linked lists:
@ An edge function suc and a data function key
@ Two data constants 1, 0 to represent binary words.

Directed graphs of arity d:
@ dedge functions eq, ..., eq4
@ the out-degree of a vertex is < d
@ the in-degree is unbounded

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 8/38

Computing over graph structures

Dynamic data structures in real life

InC
typedef struct Cell {
int key;
struct Cell xsuc;
} TypeCell;

typedef struct Cell xList;

also similar to objects . ..

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 9/38

Computing over graph structures

Syntax of simple while imperative language

Expressions:
V e Vertex == X|nil|v|f(V)
D ¢ Data == Y|d|g((V)
B € Boolean = V=V |D=D|—~(B)|R(E;...Ep)

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 10/38

Syntax of simple while imperative language

Expressions:
V e Vertex == X|nil|v|f(V)
D € Data = Y|d|g(V)
B € Boolean = V=V |D=D|—~(B)|R(E;...Ep)

A skeletal imperative language, which supports pointers:

PePrg = X:=V|Y:=D
| f(X):=V | g(X):=D
| new(X)
| skip | P; P
i (B) {P} {P}
| while (B) {P}

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 10/38

Semantics

Outline

e Semantics

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 11/38

Semantics

Evolving structures

A structure S has a vertex set V and a data set D.

Let o be a store which assigns a vertex of V', a data of D or nil to
variables.

@ If we run an instruction f(X):=V on a structure S,
it evolves to the structure S’ = S[f(c(X)) + V]

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 12/38

Semantics

Evolving structures

A structure S has a vertex set V and a data set D.

Let o be a store which assigns a vertex of V', a data of D or nil to

variables.

@ If we run an instruction f(X):=V on a structure S,
it evolves to the structure S’ = S[f(c(X)) + V]

@ If we run an instruction New(X) on a structure S, it evolves to S’

stV =vu{utandu¢gV.

(Shonan) Evolving graphs, non-interference, complexity

November, 7th 2013

12/38

Semantics

Copy a list in reverse orders

y = nil ;
while (x#nil)

{ z:=y;
New(y);
suc(y):=z;
x:=suc(x)}

When a New command is executed,

@ We pick up a free vertex u (from a reserve)
@ The variable X points to this new vertex u.
@ The vertex domain increases.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 13/38

Semantics

Runtime

A configuration is a couple (S, i) consisting of
@ a structure S and of a store p.
A computation is a sequence of configurations:

(8070-0) = (S1a01) =...= (Smgn)

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

14/38

Semantics

Runtime

A configuration is a couple (S, i) consisting of
@ a structure S and of a store p.
A computation is a sequence of configurations:

(8070-0) = (S1a01) = ... = (‘Sn?Un)
Runtime:

Timep(So, po) = n

A program P is running in polynomial time if
V(S p) Timep(S,) < k- |S|¥
where |S| is the cardinal of the vertex-universe V.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

14/38

Tarjan’s register machines

Tarjan (1977)

A reference machine consists of
@ a memory
@ afinite numbers of registers.

@ the memory is a finite set of records. Each record is a finite
number of items identified by a name. All records are identical in
structure.

Memory is a graph and the control consists in pointers on nodes

Proposition

Pure reference machines compute while programs with update and
new commands, and conversely.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 15/38

Semantics

Abstract State Machines

Gurevich (1993)
@ a vocabulary ¥ with static and dynamic names
@ a state is a structure (algebra) over ¥ on a base set.
@ programs are simultaneous structure updates

@ arunis a sequence of states (evolving algebras)

@ To create a new element, there is a Reserve

(1) The element is there, but not used, e.g. a Turing machine has an
infinite tape
(2) The element is created, e.g. Gandy’s formalization of machines

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 16/38

Semantics

Questions

@ What is the domain of computation ?

e Free algebra, Abstract (Chuch) algebra
o First order structures like graphs

Does a domain of computation evolve ?
@ Where does come from new element ?

What is the address space ?
How to restrict computational complexity ?

e By restricting the program syntax
e By typing programs
e By analyzing the information flow

Is the restriction complete for a complexity class ?
What'’s about lower bound
What's about modifying programs

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

17/38

Semantics

A partial matrix of ICC models

| Model | Domain | Evolving | State Space | Expr. | Restrict. |
™ Tapes No Infinite Turing
complete
Pointer Graphs | Yes Reserve Turing
machines complete
ICC Church | No Ptime various
algebra
Hoffman | Graphs | No polynomially | C syntactic
Shépp bounded Logspace
Jones Trees No polynomially | Logspace | syntactic
Life-cons
* Graphs | No polynomially | Logspace | syntactic
* Graphs | Yes polynomially | Ptime syntactic
New types
* Graphs | New polynomially | Ptime syntactic
update types

(Shonan)

Evolving graphs, non-interference, complexity

November, 7th 2013

18/38

Characterization of log-space

Outline

0 Characterization of log-space

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 19/38

Characterization of log-space

Log-space computation

A program P over graph-structures is a jumping-program if it uses no
edge update and no new instruction.

Theorem

A language is accepted by a jumping-program iff it is decidable in
LOGSPACE.

The proof is based on Jones cons-free imperative programming
language WHILE\Cos,

Hofmann and Schépp introduced pure pointer programs over static
graph-structures.
See also Jumping automaton on graphs (JAG) of Cook & Rackoff

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 20/38

Data flow analysis

Outline

e Data flow analysis

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 21/38

Data flow analysis

Program ramification

Program tiering or ramification, has been introduced by Bellantoni &
Cook’92 and Leivant’94.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 22/38

Data flow analysis

Program ramification

Program tiering or ramification, has been introduced by Bellantoni &
Cook’92 and Leivant’94.

@ Atomic types are elements of a lattice T = (T, <,0,V, A)
@ Expression are typed thus:

MX) =« a— [e A(f) NAFV:a
NAFX:«a LAFfV): B

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 22/38

Data flow analysis

Program ramification

Program tiering or ramification, has been introduced by Bellantoni &
Cook’92 and Leivant’94.

@ Atomic types are elements of a lattice T = (T, <,0,V, A)
@ Expression are typed thus:

MX) =« a— [e A(f) NAFV:a
NAFX:«a LAFfV): B

@ Types of an edge or a data function f satisfies
Stable all types of f are of the form a — «,
Reducing all types of f are of the form o — £,
with 5 < «,

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 22/38

Data flow analysis

Program ramification

Program tiering or ramification, has been introduced by Bellantoni &
Cook’92 and Leivant’94.

@ Atomic types are elements of a lattice T = (T, <,0,V, A)
@ Expression are typed thus:

MNX) =« a— B e A(f) NAFV:«
NAFX:«a LAFfV): B

@ Types of an edge or a data function f satisfies
Stable all types of f are of the form a — «,
Reducing all types of f are of the form o — £,
with 5 < «,

@ As a result, there is a downward information flow
@ and no upward information flow!

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 22/38

Data flow analysis

Typing rules for explicit information flows

Edge modification
NMAFX:« NMAEFV:«a
NAFX:=V:«

LAFf(X):a T,AFV:a
NAFX):=V 1«

Vertices are created at tier 0:
NNAFX:0
LAFnew(X) :0

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

23/38

Data flow analysis

Typing rules for implicit information flows

NMAFB:« NMAFP:«
I, A+ while(B){P}: «

NMAFP:« rAFP : 8
AP P :aVvp

NMAFB:a T,AFP :«
MAERIf(B){P}{P1} : «

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

24/38

Data flow analysis

Copy a list in reverse orders

(Shonan) Evolving graphs, non-interference, complexity

November, 7th 2013

25/38

Data flow analysis

Copy a list in reverse orders

y = nil ;
while (x#nil)

{ z:=y;

New(y);
suc(y):=z;
x:=suc(x)}
Typing of copy
y® = nil : 0;
while (x'#£ nil)

{ 2%:=y%:0;
New(y®):0;
suc(y%):=2°:0;
x!' = suc(x'):1 }:1

v

(Shonan) Evolving graphs, non-interference, complexity

November, 7th 2013

25/38

Data flow analysis

Multiplication

vi:=start':1;
while (u'# nil)
{ vi:=start':1;
while (v!'# nil)
{ v! = suc(v'):1;
U A |
u' = suc(u'):1 } :1

Simulate a polynomial Turing Machine.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 26/38

Secure information flow

Theorem (Non-Interference - informal)

In a computation of a well-typed program, the graph structures
accessible by tier « variables does not modify graph structures, which
are just accessible by higher tier 5 variables, if a < .

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 27/38

Secure information flow

An information flow is defined by a lattice (S, <) where S is a finite set
of Security Classes.

Unclassified < Confidential < Secret

Volpano, Smith and Irvine (1996)

@ A secure flow typing for While programs which is sound wrt a
security model.

@ A confidential values can not leak to an unclassified variable.

Intuition

Relations between non-interference, information flow and complexity
(see Lics’11)

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 28/38

Data flow analysis

Information flow : two points of view

| Security view

Complexity view

A lattice denotes a security policy

A lattice denotes
the data ramification

Types for secure flow analysis

Types for complexity flow analysis

Integrity

Downward flows are allowed

Non-interference

Values of tier 0 are obtained
by iterating on tier 1 values

Declassification

A value of tier 0 may be
upgraded safely to tier 1

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 29/38

Characterization of Ptime

Outline

e Characterization of Ptime

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 30/38

Characterization of Ptime

Stationary loops

A loop is stationary of tier « if no f of type a — « is modified therein.

Tree insertion in binary search trees

if (x' = nil) then {x':=T:1;}
else {
while ((x'# nil) and (key(T') # key(x')))
{if (key(T') < key(x'))
then {p':=x'; x':= left(x")}
else {p':=x'; x':=right(x")"}
1t
if (key(T') < key(p'))
then {left(p')
else {right(p'):

T1:1}
T1:1}

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

31/38

Tightly-modifying loops

A function f is probed if it occurs either in some assignment X := V or
in the guard of a loop or a branching command.

Set union

while (g' #nil)! {save! := next(q'):1;
parent(q') := r':1;

next(q') := next(r'):1;
next(r') := q':1;
q' := save':1}

A loop is tightly-modifying if it has modified functions of type o — «,
but at most one of those is also probed.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 32/38

Characterization of Ptime

Ptime characterization

A program P is tightly-ramifiable if it is well-typed and each loop of P is
stationary or tightly-modifying

Theorem

A function over graph-structures is computable in polynomial time iff it
is computed by a terminating and tightly-ramifiable program.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 33/38

Characterization of Ptime

It is well typed but val is modified and both suc and val are probed:

An exponential-time program
u' := head':1
while (u'# nil)
{ if (val(u) == 1))
then { val(u):=0; u:=suc(u)}:1
else { val(u):=1; u:=head}:1 31

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 34/38

Proof : Non-Interference

Say (Sa,or) disregards vertices that are not reachable from some
variable of tier 1 using edge functions of type (1 — 1).

Lemma

Suppose, A+ P:a,andS,c EP =S¢ E=P.
There is a configuration (S”,o") such that

1) Sa, o1): P= S”,U”): P,

2) and (S}, of) = (Sh,of)-

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 35/38

Proof : Number of configurations is polynomially bounded

Lemma

Assume thatT, A+ P : «, and P is tightly-modifying.
There is a k > 0 such thatif S,o |= P (=)' S',0’ = P’ then
t < k+|S|k.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 36/38

Characterization of Ptime

Proof : Number of configurations is polynomially bounded

Lemma

Assume thatT, A+ P : «, and P is tightly-modifying.

There is ak > 0 such that ifS,o = P (=)' 8,0’ |= P’ then
t < k+|S|k.

Let S be a digraph of out-degree 1. We say that a set of vertices C
generates S if every vertex in S is reachable by a path starting at C.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 36/38

Characterization of Ptime

Proof : Number of configurations is polynomially bounded

Lemma

Assume thatT, A+ P : «, and P is tightly-modifying.

There is ak > 0 such that ifS,o = P (=)' 8,0’ |= P’ then
t < k+|S|k.

Let S be a digraph of out-degree 1. We say that a set of vertices C
generates S if every vertex in S is reachable by a path starting at C.

Lemma
The number (up to isomorphism) of digraphs with n vertices, and a
generator of size k, is < n?k°.

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 36/38

Adding recursion

Augmenting our language with linear recursion

Search of a path in a graph

Proc search(v',w'))
{if (v=w)! return true:1;
visited (v) := true:1;
forall t' in AdjList(v)
{if (visited(t)'=false)

if (search(t,w)'=true) return true:1;}
return false:1;}

Typing rules where 0 < «:
NAFX:a TLAFE :« NMAFE:«
NAFX=FE,.. E):« Al returnE : «

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013

37/38

Characterization of Ptime

Thanks !

(Shonan) Evolving graphs, non-interference, complexity November, 7th 2013 38/38

	Reference machines
	Computing over graph structures
	Semantics
	Characterization of log-space
	Data flow analysis
	Characterization of Ptime

