
Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order complexity and
application in computable analysis

Hugo Férée
Shonan meeting on ICC and applications

Hugo Férée Higher order complexity 1/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Hugo Férée Higher order complexity 2/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order complexity today:
3 Order 1 (N→ N) computability and complexity
3 Order 2 ((N→ N)→ N): Oracle Turing Machines (otm)
7 Order 3 and above:

• bff
• but it is a far smaller class than the continuous

functionals (contrary to orders 1 and 2).
• no satisfying machine model
• no general notion of complexity
• several (incomparable) notions of computability, but one

natural and robust class: the Kleene-Kreisel functionals.
• How to define a general and meaningful notion of

complexity at all finite types?
Hugo Férée Higher order complexity 3/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Basic Feasible Functionals (bff)

Definition
PV ω = simply-typed λ-calculus + ptime +R
R is a second order bounded recursion on notation:

R(x0,F ,B , x) =



x0 if x = 0
t if |t| ≤ B(t)
B(t) otherwise.

with t = F (x ,R(x0,F ,B , bx2c))
bff: functionals computed by closed PV ω terms.

Hugo Férée Higher order complexity 4/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Example (Irwin, Kapron, Royer)
fx (y ) = 1 ⇐⇒ y = 2x

Φ,Ψ :
F︷ ︸︸ ︷((N→ N)→ N)× x

N→ N

Φ(F , x) =
{

0 if F (fx ) = F (f∞)
1 otherwise.

Φ ∈ bff

Ψ(F , x) =
{

0 if F (fx ) = F (f∞)
2x otherwise.

Ψ 6∈ bff
Hugo Férée Higher order complexity 5/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

The size issue

Definition (Output size)
If F : τ1 × · · · × τn → N, then |F | : τ1 × · · · × τn → N and:

|F |(t) = max|f |≤t
|F (f )|

Theorem
The output size of every bff functional is well-defined.

Hugo Férée Higher order complexity 6/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

The size issue
Example

Γ(F ) =
{

0 if ∀x ,F (f∞) = F (fx )
x minimal such that F (f∞) 6= F (fx ) otherwise.

∀x ,Fx (f ) =
{

1 if f (x) = 1
0 otherwise

∀x , |Fx | ≤ 1

Γ 6∈ bff since |Γ(Fx )| is unbounded while |Fx | is bounded.

Hugo Férée Higher order complexity 7/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Toward a machine model at higher types
Interaction with the argument in an Oracle Turing Machine:

• Machine: what is f (n)?
• Oracle: f (n) is v !

• Machine: what is f (x)?
• Oracle: what is x?
• Machine: x = n!
• Oracle: f (x) = v !

Let’s generalize this dialogue to all types: a functional is
described by the way it interacts with input functionals.
• We first define dialogs as games following strategies.
• We then define HOTM playing such games.

Hugo Férée Higher order complexity 8/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Toward a machine model at higher types
Interaction with the argument in an Oracle Turing Machine:

• Machine: what is f (n)?
• Oracle: f (n) is v !

• Machine: what is f (x)?
• Oracle: what is x?
• Machine: x = n!
• Oracle: f (x) = v !

Let’s generalize this dialogue to all types: a functional is
described by the way it interacts with input functionals.
• We first define dialogs as games following strategies.
• We then define HOTM playing such games.

Hugo Férée Higher order complexity 8/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Toward a machine model at higher types
Interaction with the argument in an Oracle Turing Machine:

• Machine: what is f (n)?
• Oracle: f (n) is v !

• Machine: what is f (x)?
• Oracle: what is x?
• Machine: x = n!
• Oracle: f (x) = v !

Let’s generalize this dialogue to all types: a functional is
described by the way it interacts with input functionals.
• We first define dialogs as games following strategies.
• We then define HOTM playing such games.

Hugo Férée Higher order complexity 8/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Hugo Férée Higher order complexity 9/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order strategies
(Hyland & Ong, Nickau)

Finite types: τ = N | τ1 × . . . × τn → N
Given a finite type, give a name to each occurrence of N:

Player︷ ︸︸ ︷
(( x
N→ f

N)→F
N)︸ ︷︷ ︸

Opponent
→φ

N

Moves: ?f or !f (v ).
Strategy: partial function which given a list of previous
moves, outputs a valid move.
Execution tree: tree representation of a strategy.

Hugo Férée Higher order complexity 10/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Examples
• x = 3

?x !x (3)

• f (x) = 2x + 1
?f ?x !x (n) !f (2n+ 1)

• (( x
N→ f

N)→F
N)→ φ

N

φ(F ) = F (λx .x)+1

F (f ) = f (3)
sφ[sF ] = 4

Hugo Férée Higher order complexity 11/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Examples
• x = 3

?x !x (3)
• f (x) = 2x + 1

?f ?x !x (n) !f (2n+ 1)

• (( x
N→ f

N)→F
N)→ φ

N

φ(F ) = F (λx .x)+1

F (f ) = f (3)
sφ[sF ] = 4

Hugo Férée Higher order complexity 11/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Examples
• x = 3

?x !x (3)
• f (x) = 2x + 1

?f ?x !x (n) ?x !x (n) ?x !x (n) !f (2n+ 1)

• (( x
N→ f

N)→F
N)→ φ

N

φ(F ) = F (λx .x)+1

F (f ) = f (3)
sφ[sF ] = 4

Hugo Férée Higher order complexity 11/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Examples
• x = 3

?x !x (3)
• f (x) = 2x + 1

?f ?x !x (n) !f (2n+ 1)
• (( x

N→ f
N)→F

N)→ φ
N

?F ?f ?x !x (3)
!f (n) !F (n)

!f (3) !F (3)
. . .

?φ ?F !F (n) !φ(n+ 1)
?f ?x !x (3) !f (3) !F (3) !φ(4)

?f ?x . . .

sφ :

sF :

φ(F ) = F (λx .x)+1

F (f ) = f (3)
sφ[sF ] = 4

Hugo Férée Higher order complexity 11/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Representation of functionals by strategies
Definition
sF [s1, . . . , sn] = v if the game between sF and s1, . . . , sn ends
with !F (v ).
Remark
A game may not end if:
• at some point a strategy is undefined
• or the dialogue is infinite

Definition
sF represents F : τ1 × · · · × τn → N if whenever s1, . . . snrepresent f1, . . . fn, sF [s1, . . . , sn] = F (f1, . . . fn).

Hugo Férée Higher order complexity 12/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Computability and continuity
Definition
• A strategy is computable if it is computable as an order

1 function.
• A function is computable if it is represented by a

computable strategy.
Proposition
A function is (Kleene-Kreisel) continuous if and only if it is
represented by a strategy.
Proposition
A function is computable if and only if it is Kleene-Kreisel
computable.

Hugo Férée Higher order complexity 13/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Size of a strategy

?F ?f ?x !x (3)
!f (n) !F (n)

!f (3) !F (3)
. . .

?φ ?F !F (n) !φ(n+ 1)
?f ?x !x (3) !f (3) !F (3) !φ(4)

?f ?x . . .

sφ :

sF :

History: H(sφ, sF )

Hugo Férée Higher order complexity 14/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Size of a strategy
Definition (Size)
By induction, the size of a strategy s over type τ is Ss : τ
• If s = ?x— !x (n) then Ss = |n|+ c .
• Ss (b1, . . . , bn) = max(s1,...sn)∈Kb1×···×Kbn

|H(s, s1, . . . sn)|with Kb = {s ′ | Ss ′ 4 b}
Example
• n ∈ N has a strategy of size O(log2 n).
• f : N→ N has a strategy of size
|f |(n) = n + max|x |≤n |f (x)|.

• The size of a strategy for F : (N→ N)→ N is at least
its modulus of continuity.

Hugo Férée Higher order complexity 15/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Hugo Férée Higher order complexity 16/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order Turing machines
Definition (HOTM)
A HOTM is a kind of oracle Turing machine which plays a
game versus strategies played by oracles.

If Mφ computes
φ : (( x

N→ f
N)→F

N)→ φ
N then

Mφ has four special states
denoted by ”x”, ”f ”, ”F ”, ”φ”.

Mφ

O
F φfx

?f

?x ?F

!x

!f !φ

!F

Running time of a HOTM: same as for an OTM.
Property
A strategy is computable ⇐⇒ it is represented by a HOTM.

Hugo Férée Higher order complexity 17/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Polynomial time complexity
Definition (Higher type polynomials)
HTP: simply-typed λ−calculus with +, ∗ : N× N→ N.
Property
HTP of type 1 and 2 are respectively the usual polynomials
and the second-order polynomials.
Definition (poly)
φ ∈ poly if φ is computed by a HOTM whose running time
is bounded by a HTP.
Remark
• poly1 = fptime, poly2 = bff2 and ∀i ≥ 3, bffi ( polyi .
• We can define other time (or space) complexity classes

Hugo Férée Higher order complexity 18/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Example
Ψ(F , x) =

{
0 if F (fx ) = F (f∞)
2x otherwise.

The complexity of Ψ is about F, n 7→ c ×F (P(n)), where
P(|x |) is the complexity of fx .
Example

Γ(F ) =
{

0 if ∀x ,F (f∞) = F (fx )
x minimal such that F (f∞) 6= F (fx ) otherwise.

The complexity of Γ is about F 7→ F (P∞)×F (P(F (P∞)))
where P∞ is the complexity of f∞.

Hugo Férée Higher order complexity 19/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order polynomial time complexity

3 Inputs: strategies
3 Size of inputs
3 Machine model
3 Running time
3 Polynomial time complexity class

Hugo Férée Higher order complexity 20/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Hugo Férée Higher order complexity 21/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Complexity in computable analysis

• Order 1
• Complexity of real functions (Ko, Friedman)
• Generalization to σ-compact spaces (Weihrauch,

Schröder)
• Order 2 (Kawamura and Cook)

• Polynomial time complexity based on bff2
• Allows to define notions of complexity over non
σ-compact spaces like C([0, 1],R)

• Is order 2 always sufficient?

Hugo Férée Higher order complexity 22/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

"Feasible" admissibility
Definition (Polynomial reducibility)
δ ≤P δ ′ if δ = δ ′ ◦ f with f polynomial time computable
Theorem (Kawamura & Cook)
δ� is the "largest" representation of C([0, 1],R) making
Eval : C([0, 1],R)→ [0, 1]→ R polynomial time computable.

→ For which spaces can we do the same?
Question (Kawamura)
For which spaces X the space C(X ,R) admits a (maximal)
representation making Eval : C(X ,R)× X → R polynomial
time computable?

Hugo Férée Higher order complexity 23/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

"Feasible" admissibility
Definition (Polynomial reducibility)
δ ≤P δ ′ if δ = δ ′ ◦ f with f polynomial time computable
Theorem (Kawamura & Cook)
δ� is the "largest" representation of C([0, 1],R) making
Eval : C([0, 1],R)→ [0, 1]→ R polynomial time computable.
→ For which spaces can we do the same?
Question (Kawamura)
For which spaces X the space C(X ,R) admits a (maximal)
representation making Eval : C(X ,R)× X → R polynomial
time computable?

Hugo Férée Higher order complexity 23/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

First order representations are not sufficient
Theorem
Let X be a Polish space that is not σ-compact. Then there
is no representation of C(X ,R) making the time complexity
of EvalX ,R : C(X ,R)× X → R well-defined.
(X = C([0, 1],R) for example)
Lemma
There is no surjective partial continuous function
φ : (N→ N)→ C(N→ N,N) bounded by a total continuous
function.
Corollary
"Higher order is required to define complexity-friendly
representations."

Hugo Férée Higher order complexity 24/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Higher order representations

Definition (Kleene-Kreisel Spaces)
KKS = [N, ⊆,→,×]
Definition (Representation)
A representation δ of a space X with a KKS A is a
surjective function from A to X .
Definition (Polynomial reduction)
δ1 ≤P δ2 if δ1 = δ2 ◦ F for some polynomial time computable
F : A1 → A2.

Hugo Férée Higher order complexity 25/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Standard representation of C(X ,Y )

Definition
δC(X ,Y )(F ) = f whenever f ◦ δX = δY ◦ F

Property
Eval : C(X ,Y )× X → Y is polynomial-time computable
w.r.t. (δC(X ,Y ), δX , δY )
Theorem
It is the largest representation making Eval polynomial.

Hugo Férée Higher order complexity 26/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Hugo Férée Higher order complexity 27/28



Background on higher order complexity Higher order strategies Higher order Turing machines Computable analysis Perspectives

Perspectives
• We have a robust definition of higher order complexity.
• This gives us new representation spaces.
• Some spaces can now be well represented.
• We need to understand the boundaries of the class of

polynomial time functionals.
• Make further comparisons with bff.
• Give implicit characterizations (e.g. function algebra

like PV ω).
• Study the extension of TTE with these new

representations (e.g. admissibility)
• Find applications in other domains.

Hugo Férée Higher order complexity 28/28


	Background on higher order complexity
	Higher order strategies
	Higher order Turing machines
	Computable analysis
	Perspectives

