Higher order complexity and application in computable analysis

Hugo Férée

Shonan meeting on ICC and applications

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Higher order complexity today:

- ✓ Order 1 ($\mathbb{N} \to \mathbb{N}$) computability and complexity
- ✓ Order 2 (($\mathbb{N} \to \mathbb{N}$) $\to \mathbb{N}$): Oracle Turing Machines (отм)
- X Order 3 and above:
 - BFF
 - but it is a far smaller class than the continuous functionals (contrary to orders 1 and 2).
 - no satisfying machine model
 - no general notion of complexity
 - several (incomparable) notions of computability, but one natural and robust class: the Kleene-Kreisel functionals.
- How to define a general and meaningful notion of complexity at all finite types?

Basic Feasible Functionals (BFF)

Definition

 $PV^{\omega} = \text{simply-typed } \lambda\text{-calculus } + \text{PTIME} + \mathcal{R}$ \mathcal{R} is a second order bounded recursion on notation:

$$\mathcal{R}(x_0, F, B, x) = \begin{cases} x_0 & \text{if } x = 0 \\ t & \text{if } |t| \le B(t) \\ B(t) & \text{otherwise.} \end{cases}$$

with
$$t = F(x, \mathcal{R}(x_0, F, B, \lfloor \frac{x}{2} \rfloor))$$

BFF: functionals computed by closed PV^{ω} terms.

Example (Irwin, Kapron, Royer)

$$f_{x}(y) = 1 \iff y = 2^{x}$$

$$\Phi, \Psi : \overbrace{((\mathbb{N} \to \mathbb{N}) \to \mathbb{N})}^{F} \times \overset{x}{\mathbb{N}} \to \mathbb{N}$$

$$\Phi(F,x) = \begin{cases} 0 & \text{if } F(f_x) = F(f_\infty) \\ 1 & \text{otherwise.} \end{cases}$$

 $\Phi \in \mathsf{BFF}$

$$\Psi(F,x) = \begin{cases} 0 & \text{if } F(f_x) = F(f_\infty) \\ 2^x & \text{otherwise.} \end{cases}$$

Ψ ∉ вғғ

The size issue

Definition (Output size)

If
$$F: \tau_1 \times \cdots \times \tau_n \to \mathbb{N}$$
, then $|F|: \tau_1 \times \cdots \times \tau_n \to \mathbb{N}$ and:

$$|F|(t) = \max_{|f| \le t} |F(f)|$$

Theorem

The output size of every BFF functional is well-defined.

The size issue

Example

$$\Gamma(F) = \begin{cases} 0 \text{ if } \forall x, F(f_{\infty}) = F(f_{x}) \\ x \text{ minimal such that } F(f_{\infty}) \neq F(f_{x}) \text{ otherwise.} \end{cases}$$

$$\forall x, F_x(f) = \begin{cases} 1 & \text{if } f(x) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\forall x, |F_x| < \mathbf{1}$$

 $\Gamma \notin BFF \text{ since } |\Gamma(F_x)| \text{ is unbounded while } |F_x| \text{ is bounded.}$

Toward a machine model at higher types

Interaction with the argument in an Oracle Turing Machine:

• Machine: what is f(n)?

• Oracle: f(n) is v!

Toward a machine model at higher types

Interaction with the argument in an Oracle Turing Machine:

- Machine: what is f(n)?
- Oracle: f(n) is v!

- Machine: what is f(x)?
- Oracle: what is *x*?
- Machine: x = n!
- Oracle: f(x) = v!

Toward a machine model at higher types

Interaction with the argument in an Oracle Turing Machine:

- Machine: what is f(n)?
- Oracle: f(n) is v!

- Machine: what is f(x)?
- Oracle: what is *x*?
- Machine: x = n!
- Oracle: f(x) = v!

Let's generalize this dialogue to all types: a functional is described by the way it interacts with input functionals.

- We first define dialogs as games following strategies.
- We then define HOTM playing such games.

Background on higher order complexity

Higher order strategies

Higher order Turing machines

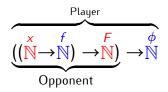
Computable analysis

Perspectives

Higher order strategies

(Hyland & Ong, Nickau)

Finite types: $\tau = \mathbb{N} \mid \tau_1 \times \ldots \times \tau_n \to \mathbb{N}$ Given a finite type, give a name to each occurrence of \mathbb{N} :



Moves: $?^f$ or $!^f(v)$.

Strategy: partial function which given a list of previous moves, outputs a valid move.

Execution tree: tree representation of a strategy.

•
$$x = 3$$

$$\frac{?^x}{}!^x(3)$$

- x = 3
- f(x) = 2x + 1

$$\frac{?^{f}}{?^{x}}?^{x}\frac{!^{x}(n)}{!^{f}(2n+1)}$$

•
$$x = 3$$

•
$$f(x) = 2x + 1$$

$$\frac{?^{f}}{?^{x}} ?^{x} \frac{!^{x}(n)}{?^{x}} ?^{x} \frac{!^{x}(n)}{?^{x}} ?^{x} \frac{!^{x}(n)}{?^{x}} !^{f}(2n+1)$$

•
$$x = 3$$

• $f(x) = 2x + 1$
• $((\overset{\times}{\mathbb{N}} \to \overset{f}{\mathbb{N}}) \to \overset{F}{\mathbb{N}}) \to \overset{\phi}{\mathbb{N}}$

$$s_{\phi}: \frac{?^{\phi}}{?^{F}} \frac{?^{F} (n)}{?^{f}} \frac{!^{\phi}(n+1)}{?^{f}} \frac{!^{\phi}(3)}{?^{f}} \frac{!^{f}(3)}{?^{f}} \frac{!^{\phi}(4)}{?^{f}} \qquad \phi(F) = F(\lambda x.x) + 1$$

$$s_{F}: \frac{?^{F}}{?^{f}} \frac{?^{x}}{?^{x}} \frac{!^{x}(3)}{!^{x}(3)} \frac{!^{f}(3)}{!^{f}(3)} \frac{!^{f}(3)}{!^{f}(3)} \cdots \qquad s_{\phi}[s_{F}] = 4$$

Representation of functionals by strategies

Definition

 $s_F[s_1, \ldots, s_n] = v$ if the game between s_F and s_1, \ldots, s_n ends with $!_F(v)$.

Remark

A game may not end if:

- at some point a strategy is undefined
- or the dialogue is infinite

Definition

 s_F represents $F: \tau_1 \times \cdots \times \tau_n \to \mathbb{N}$ if whenever $s_1, \dots s_n$ represent $f_1, \dots f_n, s_F[s_1, \dots, s_n] = F(f_1, \dots f_n)$.

Computability and continuity

Definition

- A strategy is computable if it is computable as an order 1 function
- A function is computable if it is represented by a computable strategy.

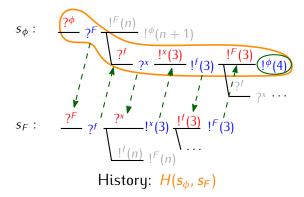
Proposition

A function is (Kleene-Kreisel) continuous if and only if it is represented by a strategy.

Proposition

A function is computable if and only if it is Kleene-Kreisel computable.

Size of a strategy



Size of a strategy

Definition (Size)

By induction, the size of a strategy s over type au is S_s : au

- If $s = \frac{\gamma^x}{n!} !^x(n)$ then $S_s = |n| + c$.
- $S_s(b_1, \ldots, b_n) = \max_{(s_1, \ldots s_n) \in K_{b_1} \times \cdots \times K_{b_n}} |H(s, s_1, \ldots s_n)|$ with $K_b = \{s' \mid S_{s'} \preccurlyeq b\}$

- $n \in \mathbb{N}$ has a strategy of size $\mathcal{O}(\log_2 n)$.
- $f: \mathbb{N} \to \mathbb{N}$ has a strategy of size $|f|(n) = n + \max_{|x| \le n} |f(x)|$.
- The size of a strategy for $F:(\mathbb{N}\to\mathbb{N})\to\mathbb{N}$ is at least its modulus of continuity.

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

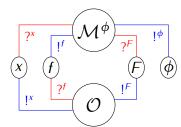
Perspectives

Higher order Turing machines

Definition (HOTM)

A HOTM is a kind of oracle Turing machine which plays a game versus strategies played by oracles.

If \mathcal{M}^{ϕ} computes $\phi: ((\overset{\mathsf{x}}{\mathbb{N}} \to \overset{f}{\mathbb{N}}) \to \overset{f}{\mathbb{N}}) \to \overset{\phi}{\mathbb{N}}$ then \mathcal{M}^{ϕ} has four special states denoted by "x", "f", "F", " ϕ ".



Running time of a HOTM: same as for an OTM.

Property

A strategy is computable \iff it is represented by a HOTM.

Polynomial time complexity

Definition (Higher type polynomials)

HTP: simply-typed λ -calculus with $+, * : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Property

HTP of type 1 and 2 are respectively the usual polynomials and the second-order polynomials.

Definition (POLY)

 $\phi \in \text{POLY if } \phi$ is computed by a HOTM whose running time is bounded by a HTP.

Remark

- POLY₁ = FPTIME, POLY₂ = BFF₂ and $\forall i \geq 3$, BFF_i \subseteq POLY_i.
- We can define other time (or space) complexity classes

$$\Psi(F,x) = \begin{cases} 0 & \text{if } F(f_x) = F(f_\infty) \\ 2^x & \text{otherwise.} \end{cases}$$

The complexity of Ψ is about \mathcal{F} , $n \mapsto c \times \mathcal{F}(P(n))$, where P(|x|) is the complexity of f_x .

Example

$$\Gamma(F) = \begin{cases} 0 \text{ if } \forall x, F(f_{\infty}) = F(f_{x}) \\ x \text{ minimal such that } F(f_{\infty}) \neq F(f_{x}) \text{ otherwise.} \end{cases}$$

The complexity of Γ is about $\mathcal{F} \mapsto \mathcal{F}(P_{\infty}) \times \mathcal{F}(P(\mathcal{F}(P_{\infty})))$ where P_{∞} is the complexity of f_{∞} .

Higher order polynomial time complexity

- ✓ Inputs: strategies
- ✓ Size of inputs
- ✓ Machine model
- ✓ Running time
- ✓ Polynomial time complexity class

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Complexity in computable analysis

- Order 1
 - Complexity of real functions (Ko, Friedman)
 - Generalization to σ -compact spaces (Weihrauch, Schröder)
- Order 2 (Kawamura and Cook)
 - Polynomial time complexity based on BFF2
 - Allows to define notions of complexity over non σ -compact spaces like $\mathcal{C}([0,1],\mathbb{R})$
- Is order 2 always sufficient?

"Feasible" admissibility

Definition (Polynomial reducibility)

 $\delta \leq_P \delta'$ if $\delta = \delta' \circ f$ with f polynomial time computable

Theorem (Kawamura & Cook)

 δ_{\square} is the "largest" representation of $\mathcal{C}([0,1],\mathbb{R})$ making Eval: $\mathcal{C}([0,1],\mathbb{R}) \to [0,1] \to \mathbb{R}$ polynomial time computable.

"Feasible" admissibility

Definition (Polynomial reducibility)

 $\delta \leq_P \delta'$ if $\delta = \delta' \circ f$ with f polynomial time computable

Theorem (Kawamura & Cook)

 δ_{\square} is the "largest" representation of $\mathcal{C}([0,1],\mathbb{R})$ making $Eval: \mathcal{C}([0,1],\mathbb{R}) \to [0,1] \to \mathbb{R}$ polynomial time computable.

 \rightarrow For which spaces can we do the same?

Question (Kawamura)

For which spaces X the space $\mathcal{C}(X,\mathbb{R})$ admits a (maximal) representation making $Eval: \mathcal{C}(X,\mathbb{R}) \times X \to \mathbb{R}$ polynomial time computable?

First order representations are not sufficient

Theorem

Let X be a Polish space that is not σ -compact. Then there is no representation of $\mathcal{C}(X,\mathbb{R})$ making the time complexity of $Eval_{X,\mathbb{R}}:\mathcal{C}(X,\mathbb{R})\times X\to \mathbb{R}$ well-defined.

$$(X = \mathcal{C}([0,1],\mathbb{R}) \text{ for example})$$

Lemma

There is no surjective partial continuous function $\phi: (\mathbb{N} \to \mathbb{N}) \to \mathcal{C}(\mathbb{N} \to \mathbb{N}, \mathbb{N})$ bounded by a total continuous function.

Corollary

"Higher order is required to define complexity-friendly representations."

Higher order representations

Definition (Kleene-Kreisel Spaces)

$$KKS = [\mathbb{N}, \subseteq, \rightarrow, \times]$$

Definition (Representation)

A representation δ of a space X with a KKS A is a surjective function from A to X.

Definition (Polynomial reduction)

 $\delta_1 \leq_P \delta_2$ if $\delta_1 = \delta_2 \circ F$ for some polynomial time computable $F: A_1 \to A_2$.

Standard representation of C(X, Y)

Definition

$$\delta_{\mathcal{C}(X,Y)}(F) = f$$
 whenever $f \circ \delta_X = \delta_Y \circ F$

Property

Eval: $C(X,Y) \times X \to Y$ is polynomial-time computable w.r.t. $(\delta_{C(X|Y)}, \delta_X, \delta_Y)$

Theorem

It is the largest representation making Eval polynomial.

Background on higher order complexity

Higher order strategies

Higher order Turing machines

Computable analysis

Perspectives

Perspectives

- We have a robust definition of higher order complexity.
- This gives us new representation spaces.
- Some spaces can now be well represented.
- We need to understand the boundaries of the class of polynomial time functionals.
- Make further comparisons with BFF.
- Give implicit characterizations (e.g. function algebra like PV^{ω}).
- Study the extension of TTE with these new representations (e.g. admissibility)
- Find applications in other domains.