
Infinitary Lambda Calculi
from a Linear Viewpoint

Ugo Dal Lago

Shonan Meeting on ICC and Applications
November 5th 2013

Computation over Streams

From f : {0, 1}∗ → {0, 1}∗. . .

Computation over Streams

From f : {0, 1}∗ → {0, 1}∗. . .

Af

Computation over Streams

From f : {0, 1}∗ → {0, 1}∗. . .

Af
0010

Computation over Streams

From f : {0, 1}∗ → {0, 1}∗. . .

Af
f(0010)

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 010010

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 101001

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 010100

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 010100 0

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 010100 10

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 101010 10

Computation over Streams

. . . to f : {0, 1}ω → {0, 1}ω.

Af
· · · 101010 010

Computation over Streams

Termination
(Af produces an output in finite time)

⇓
Productivity

(Af produces “the next” bit in finite time)

Computation over Streams

Termination
(Af produces an output in finite time)

⇓
Productivity

(Af produces “the next” bit in finite time)

Infinitary Term Rewriting – Example

flip : {0, 1}ω → {0, 1}ω.

Σ = {0, 1}
s ∈ {0, 1}ω 7→ s ∈ InfTerms(Σ)

f(0 · s)→ 1 · f(s)

f(1 · s)→ 0 · f(s)

f(s) −→ω flip(s)

I Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].

Infinitary Term Rewriting – Example

flip : {0, 1}ω → {0, 1}ω.

Σ = {0, 1}
s ∈ {0, 1}ω 7→ s ∈ InfTerms(Σ)

f(0 · s)→ 1 · f(s)

f(1 · s)→ 0 · f(s)

f(s) −→ω flip(s)

I Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].

Infinitary Term Rewriting – Example

flip : {0, 1}ω → {0, 1}ω.

Σ = {0, 1}
s ∈ {0, 1}ω 7→ s ∈ InfTerms(Σ)

f(0 · s)→ 1 · f(s)

f(1 · s)→ 0 · f(s)

f(s) −→ω flip(s)

I Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].

Infinitary Term Rewriting – Example

flip : {0, 1}ω → {0, 1}ω.

Σ = {0, 1}
s ∈ {0, 1}ω 7→ s ∈ InfTerms(Σ)

f(0 · s)→ 1 · f(s)

f(1 · s)→ 0 · f(s)

f(s) −→ω flip(s)

I Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].

Infinitary Term Rewriting – Example

flip : {0, 1}ω → {0, 1}ω.

Σ = {0, 1}
s ∈ {0, 1}ω 7→ s ∈ InfTerms(Σ)

f(0 · s)→ 1 · f(s)

f(1 · s)→ 0 · f(s)

f(s) −→ω flip(s)

I Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].

Infinity and the λ-calculus
I It works well in the finitary case (as we all know).
I Already in usual Λ, computation over streams can be

modeled through infinitary interaction and laziness.
I As we know, 0, s and 〈·, ·〉 can all be defined in Λ.
I Consider

N = λx.λy.λz.〈y, x(sy)〉;
Mn = Y N n.

I For every n and for every v, Mn v lazily evaluates to
〈n,Mn+1〉.

I As a consequence, Mn can be seen as representing the stream

n · (n+ 1) · (n+ 2) · (n+ 3) · . . .

I But infinitely many interactions with Mn and infinitely many
(finite) computations are necessary to “discover” the value it
represents!

I We would like infinity to become a first-class citizen. . .

Infinity and the λ-calculus
I It works well in the finitary case (as we all know).
I Already in usual Λ, computation over streams can be

modeled through infinitary interaction and laziness.
I As we know, 0, s and 〈·, ·〉 can all be defined in Λ.
I Consider

N = λx.λy.λz.〈y, x(sy)〉;
Mn = Y N n.

I For every n and for every v, Mn v lazily evaluates to
〈n,Mn+1〉.

I As a consequence, Mn can be seen as representing the stream

n · (n+ 1) · (n+ 2) · (n+ 3) · . . .

I But infinitely many interactions with Mn and infinitely many
(finite) computations are necessary to “discover” the value it
represents!

I We would like infinity to become a first-class citizen. . .

Infinity and the λ-calculus
I It works well in the finitary case (as we all know).
I Already in usual Λ, computation over streams can be

modeled through infinitary interaction and laziness.
I As we know, 0, s and 〈·, ·〉 can all be defined in Λ.
I Consider

N = λx.λy.λz.〈y, x(sy)〉;
Mn = Y N n.

I For every n and for every v, Mn v lazily evaluates to
〈n,Mn+1〉.

I As a consequence, Mn can be seen as representing the stream

n · (n+ 1) · (n+ 2) · (n+ 3) · . . .

I But infinitely many interactions with Mn and infinitely many
(finite) computations are necessary to “discover” the value it
represents!

I We would like infinity to become a first-class citizen. . .

Infinity and the λ-calculus
I It works well in the finitary case (as we all know).
I Already in usual Λ, computation over streams can be

modeled through infinitary interaction and laziness.
I As we know, 0, s and 〈·, ·〉 can all be defined in Λ.
I Consider

N = λx.λy.λz.〈y, x(sy)〉;
Mn = Y N n.

I For every n and for every v, Mn v lazily evaluates to
〈n,Mn+1〉.

I As a consequence, Mn can be seen as representing the stream

n · (n+ 1) · (n+ 2) · (n+ 3) · . . .

I But infinitely many interactions with Mn and infinitely many
(finite) computations are necessary to “discover” the value it
represents!

I We would like infinity to become a first-class citizen. . .

Infinity and the λ-calculus: Λ∞ [KSSV1998]

I Terms are potentially infinite trees built from the usual
grammar:

M ::= x | λx.M | MN

I Analogously, one can define the language of terms as the
metric completion of Λ with respect to an appropriate
metric.

I Which metric?
I Two terms differ by 1

2n if they are equal up to depth n.
I Where does the depth grow? Whenever we go inside a term?

I Too much infinity:
I Productivity is not guaranteed (expected);
I Complete Developments Theorem does not hold;
I Confluence is lost (but can be recovered in Böhm

reduction).

Λ∞

I Depending on how you define the depth of a term, you can
get 8 = 23 calculi.

I Examples:

Λ001

M ≡ λx.xM
N ≡ λx.N

Λ100

M ≡ (λx.x)M
N ≡ λx.N

Λ000

M ≡ λx.xM
N ≡ λx.N

Λ111

M ≡ (λx.x)M
N ≡ λx.N

Λ∞

I Depending on how you define the depth of a term, you can
get 8 = 23 calculi.

I Examples:

Λ001

M ≡ λx.xM
N ≡ λx.N

Λ100

M ≡ (λx.x)M
N ≡ λx.N

Λ000

M ≡ λx.xM
N ≡ λx.N

Λ111

M ≡ (λx.x)M
N ≡ λx.N

Λ∞

I Depending on how you define the depth of a term, you can
get 8 = 23 calculi.

I Examples:

Λ001

M ≡ λx.xM
N ≡ λx.N

Λ100

M ≡ (λx.x)M
N ≡ λx.N

Λ000

M ≡ λx.xM
N ≡ λx.N

Λ111

M ≡ (λx.x)M
N ≡ λx.N

Λ∞

I Depending on how you define the depth of a term, you can
get 8 = 23 calculi.

I Examples:

Λ001

M ≡ λx.xM
N ≡ λx.N

Λ100

M ≡ (λx.x)M
N ≡ λx.N

Λ000

M ≡ λx.xM
N ≡ λx.N

Λ111

M ≡ (λx.x)M
N ≡ λx.N

Reduction Sequences of Infinite Length

I Suppose
M →M1 →M2 → . . .

I Is this a reasonable reduction sequence? Yes, provided
I the sequence {Mi}i∈N converges to a term N .
I the sequence {di}i∈N, where di is the depth o of the redex

fired at Mi, tends to infinity.
I In this case we write M ⇒ω N .
I This can be generalized to reduction sequences of any

ordinal length, but:

Theorem (Compression)
If M ⇒α N , then M ⇒ω N .

I What does productivity mean here?
I Hereditary head normal forms!

Reduction Sequences of Infinite Length

I Suppose
M →M1 →M2 → . . .

I Is this a reasonable reduction sequence? Yes, provided
I the sequence {Mi}i∈N converges to a term N .
I the sequence {di}i∈N, where di is the depth o of the redex

fired at Mi, tends to infinity.
I In this case we write M ⇒ω N .
I This can be generalized to reduction sequences of any

ordinal length, but:

Theorem (Compression)
If M ⇒α N , then M ⇒ω N .

I What does productivity mean here?
I Hereditary head normal forms!

Reduction Sequences of Infinite Length

I Suppose
M →M1 →M2 → . . .

I Is this a reasonable reduction sequence? Yes, provided
I the sequence {Mi}i∈N converges to a term N .
I the sequence {di}i∈N, where di is the depth o of the redex

fired at Mi, tends to infinity.
I In this case we write M ⇒ω N .
I This can be generalized to reduction sequences of any

ordinal length, but:

Theorem (Compression)
If M ⇒α N , then M ⇒ω N .

I What does productivity mean here?
I Hereditary head normal forms!

Reduction Sequences of Infinite Length

I Suppose
M →M1 →M2 → . . .

I Is this a reasonable reduction sequence? Yes, provided
I the sequence {Mi}i∈N converges to a term N .
I the sequence {di}i∈N, where di is the depth o of the redex

fired at Mi, tends to infinity.
I In this case we write M ⇒ω N .
I This can be generalized to reduction sequences of any

ordinal length, but:

Theorem (Compression)
If M ⇒α N , then M ⇒ω N .

I What does productivity mean here?
I Hereditary head normal forms!

Reduction Sequences of Infinite Length

I Suppose
M →M1 →M2 → . . .

I Is this a reasonable reduction sequence? Yes, provided
I the sequence {Mi}i∈N converges to a term N .
I the sequence {di}i∈N, where di is the depth o of the redex

fired at Mi, tends to infinity.
I In this case we write M ⇒ω N .
I This can be generalized to reduction sequences of any

ordinal length, but:

Theorem (Compression)
If M ⇒α N , then M ⇒ω N .

I What does productivity mean here?
I Hereditary head normal forms!

Linearity and Termination in Λ

I Suppose that linearity holds in a strong sense:
#FO(M,x) ≤ 1 for every M .

I No duplication is possible;
I Λ becomes strongly normalizing;
I Just a tiny fraction of the class of recursive functions can be

computed.
I Reintroduce duplication: `Λ.

I Extend Λ with non-linear abstractions in the form λ!x.M ;
I Mark any term N as duplicable by a new operator (called a
box): !N ;

I Consider a new reduction rule: (λ!xM.)!N →M{x/N}.
I Duplicate with care: `ΛLLL, `ΛELL, `ΛSLL, . . .

I Put some constraint on non-linear abstractions and boxes.
I E.g. for every λ!x.M , all the occurrences of x must be in the

scope of exactly one box, i.e. LVL(x,M) = 1.

Linearity and Termination in Λ

I Suppose that linearity holds in a strong sense:
#FO(M,x) ≤ 1 for every M .

I No duplication is possible;
I Λ becomes strongly normalizing;
I Just a tiny fraction of the class of recursive functions can be

computed.
I Reintroduce duplication: `Λ.

I Extend Λ with non-linear abstractions in the form λ!x.M ;
I Mark any term N as duplicable by a new operator (called a
box): !N ;

I Consider a new reduction rule: (λ!xM.)!N →M{x/N}.
I Duplicate with care: `ΛLLL, `ΛELL, `ΛSLL, . . .

I Put some constraint on non-linear abstractions and boxes.
I E.g. for every λ!x.M , all the occurrences of x must be in the

scope of exactly one box, i.e. LVL(x,M) = 1.

Linearity and Termination in Λ

I Suppose that linearity holds in a strong sense:
#FO(M,x) ≤ 1 for every M .

I No duplication is possible;
I Λ becomes strongly normalizing;
I Just a tiny fraction of the class of recursive functions can be

computed.
I Reintroduce duplication: `Λ.

I Extend Λ with non-linear abstractions in the form λ!x.M ;
I Mark any term N as duplicable by a new operator (called a
box): !N ;

I Consider a new reduction rule: (λ!xM.)!N →M{x/N}.
I Duplicate with care: `ΛLLL, `ΛELL, `ΛSLL, . . .

I Put some constraint on non-linear abstractions and boxes.
I E.g. for every λ!x.M , all the occurrences of x must be in the

scope of exactly one box, i.e. LVL(x,M) = 1.

Λ

Λ∞

`Λ

`ΛSLL

`ΛLLL

`ΛELL· · ·

Λ

Λ∞

`Λ

`ΛSLL

`ΛLLL

`ΛELL· · ·

`Λ∞

Λ

Λ∞

`Λ

`ΛSLL

`ΛLLL

`ΛELL· · ·

`Λ∞ `Λ4S
∞

`Λ∞

I Start from the terms of `Λ.
I One could define terms of `Λ∞ following exactly the same

ideas as the ones used to get Λ∞.
I Instead, let us follow:

Motto
Duplication and infinity are related, and should be treated with
the same tools.

I Idea:
I The operator ↑M is the only place where depth (in the

sense of [KKSV1998]) increases;
I Terms in the form ↑M (called coinductive boxes) are

duplicable.
I Moreover:

I The term ↓M (an inductive box) is itself duplicable;
I Depth does not increase while crossing the operator ↓.

`Λ∞

I Start from the terms of `Λ.
I One could define terms of `Λ∞ following exactly the same

ideas as the ones used to get Λ∞.
I Instead, let us follow:

Motto
Duplication and infinity are related, and should be treated with
the same tools.

I Idea:
I The operator ↑M is the only place where depth (in the

sense of [KKSV1998]) increases;
I Terms in the form ↑M (called coinductive boxes) are

duplicable.
I Moreover:

I The term ↓M (an inductive box) is itself duplicable;
I Depth does not increase while crossing the operator ↓.

`Λ∞

I Start from the terms of `Λ.
I One could define terms of `Λ∞ following exactly the same

ideas as the ones used to get Λ∞.
I Instead, let us follow:

Motto
Duplication and infinity are related, and should be treated with
the same tools.

I Idea:
I The operator ↑M is the only place where depth (in the

sense of [KKSV1998]) increases;
I Terms in the form ↑M (called coinductive boxes) are

duplicable.
I Moreover:

I The term ↓M (an inductive box) is itself duplicable;
I Depth does not increase while crossing the operator ↓.

`Λ∞

I Start from the terms of `Λ.
I One could define terms of `Λ∞ following exactly the same

ideas as the ones used to get Λ∞.
I Instead, let us follow:

Motto
Duplication and infinity are related, and should be treated with
the same tools.

I Idea:
I The operator ↑M is the only place where depth (in the

sense of [KKSV1998]) increases;
I Terms in the form ↑M (called coinductive boxes) are

duplicable.
I Moreover:

I The term ↓M (an inductive box) is itself duplicable;
I Depth does not increase while crossing the operator ↓.

`Λ∞: Terms and Well-Formation Rules

M,N ::= x | MM | λx.M | λ↓x.M |
λ↑x.M | ↓M | ↑M

`Λ∞: Terms and Well-Formation Rules

M,N ::= x | MM | λx.M | λ↓x.M |
λ↑x.M | ↓M | ↑M

λx.M ⇒ x linear

λ↑x.M ⇒ no restrictions

λ↓x.M ⇒ no restrictions

`Λ∞: Terms and Well-Formation Rules

M,N ::= x | MM | λx.M | λ↓x.M |
λ↑x.M | ↓M | ↑M

↓Θ, ↑Ξ, x ` x (vl) ↓Θ, ↑Ξ, ↓x ` x (vi)

↓Θ, ↑Ξ, ↑x ` x (vc)
Γ, ↓Θ, ↑Ξ `M ∆, ↓Θ, ↑Ξ ` N

Γ,∆, ↓Θ, ↑Ξ `MN
(a)

Γ, x `M
Γ ` λx.M (ll)

Γ, ↓x `M
Γ ` λ↓x.M (li)

Γ, ↑x `M
Γ ` λ↑x.M (lc)

↓Θ, ↑Ξ `M
↓Θ, ↑Ξ `↓M (mi)

↓Θ, ↑Ξ `M
↓Θ, ↑Ξ `↑M (mc)

`Λ∞: Embeddings

`Λ∞

Λ000

Λ001

Λ100

Λ101

Type-2
Turing
Machines

No Confluence
No FDT
No Productivity

`Λ∞: Embeddings

`Λ∞

Λ000

Λ001

Λ100

Λ101

Type-2
Turing
Machines

No Confluence
No FDT
No Productivity

`Λ∞: Embeddings

`Λ∞

Λ000

Λ001

Λ100

Λ101

Type-2
Turing
Machines

No Confluence
No FDT
No Productivity

`Λ∞: Embeddings

`Λ∞

Λ000

Λ001

Λ100

Λ101

Type-2
Turing
Machines

No Confluence
No FDT
No Productivity

`Λ∞: Embeddings

`Λ∞

Λ000

Λ001

Λ100

Λ101

Type-2
Turing
Machines

No Confluence
No FDT
No Productivity

So What?

Drawing Inspiration from Light Logics [DanosJoinet1999]

LL

ELL

4LL TLL

No restrictions on λ!x.M

LVL(x,M) = 1 in λ!x.M

LVL(x,M) ≤ 1 in λ!x.M

LVL(x,M) ≥ 1 in λ!x.M

Drawing Inspiration from Light Logics [DanosJoinet1999]

LL

ELL

4LL TLL

No restrictions on λ!x.M

LVL(x,M) = 1 in λ!x.M

LVL(x,M) ≤ 1 in λ!x.M

LVL(x,M) ≥ 1 in λ!x.M

Drawing Inspiration from Light Logics [DanosJoinet1999]

LL

ELL

4LL TLL

No restrictions on λ!x.M

LVL(x,M) = 1 in λ!x.M

LVL(x,M) ≤ 1 in λ!x.M

LVL(x,M) ≥ 1 in λ!x.M

Drawing Inspiration from Light Logics [DanosJoinet1999]

LL

ELL

4LL TLL

No restrictions on λ!x.M

LVL(x,M) = 1 in λ!x.M

LVL(x,M) ≤ 1 in λ!x.M

LVL(x,M) ≥ 1 in λ!x.M

Drawing Inspiration from Light Logics [DanosJoinet1999]

LL

ELL

4LL TLL

No restrictions on λ!x.M

LVL(x,M) = 1 in λ!x.M

LVL(x,M) ≤ 1 in λ!x.M

LVL(x,M) ≥ 1 in λ!x.M

Drawing Inspiration from Light Logics [DanosJoinet1999]

TLL

(λ!x.x!x)!(λ!x.x!x)

(λ!x.x!x)!(λ!x.x!x)

...

4LL

(λ!x.!(x!x))!(λ!x.!(x!x))

!((λ!x.!(x!x))!(λ!x.!(x!x)))

!!((λ!x.!(x!x))!(λ!x.!(x!x)))

...

`Λ4S
∞: Design Principles

I Coinductive boxes should be treated as in 4LL.
I For every λ↑x.M , any occurrence of x appears in the scope

of at least one ↑ operator.
I Inductive boxes should rather be constrained in such a

way as to guarantee termination at each depth.
I We can grab, as an example, the exponential discipline of

SLL [Lafont2004].
I For every λ↓x.M ,

I either any occurrence of x in M appears outside the scope of
any boxes.

I or there is 1 occurrence of x in M , in the scope of exactly
one ↓ operator.

I The rest of the calculus is the same as in `Λ∞.

`Λ4S
∞: Well-Formation Rules

#Θ, ↑Ξ, lΨ, x ` x
(vl)

#Θ, ↑Ξ, lΨ,#x ` x
(vd)

lΘ, ↑Ξ, lΨ, lx ` x
(va)

Υ,#Θ, ↑Ξ, lΨ `M Π,#Θ, ↑Ξ, lΨ ` N
Υ,Π,#Θ, ↑Ξ, lΨ `MN

(a)
Γ, x `M
Γ ` λx.M (ll)

Γ,#x `M
Γ ` λ↓x.M (li)1

Γ, ↓x `M
Γ ` λ↓x.M (li)2

Γ, ↑x `M
Γ ` λ↑x.M (lc)

Ξ, ↑Ψ, lΦ `M
#Θ, ↓Ξ, ↑Ψ, lΦ `↓M

(mi)
lΞ, lΨ `M

#Θ, ↑Ξ, lΨ `↑M
(mc)

`Λ4S
∞: Main Results

Lemma (Productivity)
For every n ∈ N, the relation →n is strongly normalizing.

Theorem (Depth-by-depth Normalization)
For every term M there is a normal form N such that M =⇒ N .

Theorem (Complete Developments Theorem)
For every M and for every set R of redexes in M , there is a
complete development of R.

Theorem (Confluence)

If M , M =⇒ N and M =⇒ L, then there is P ∈ `Λ4S
∞ such that

N =⇒ P and L =⇒ P .

`Λ4S
∞: Main Results

Lemma (Productivity)
For every n ∈ N, the relation →n is strongly normalizing.

Theorem (Depth-by-depth Normalization)
For every term M there is a normal form N such that M =⇒ N .

Theorem (Complete Developments Theorem)
For every M and for every set R of redexes in M , there is a
complete development of R.

Theorem (Confluence)

If M , M =⇒ N and M =⇒ L, then there is P ∈ `Λ4S
∞ such that

N =⇒ P and L =⇒ P .

`Λ4S
∞: Main Results

Lemma (Productivity)
For every n ∈ N, the relation →n is strongly normalizing.

Theorem (Depth-by-depth Normalization)
For every term M there is a normal form N such that M =⇒ N .

Theorem (Complete Developments Theorem)
For every M and for every set R of redexes in M , there is a
complete development of R.

Theorem (Confluence)

If M , M =⇒ N and M =⇒ L, then there is P ∈ `Λ4S
∞ such that

N =⇒ P and L =⇒ P .

`Λ4S
∞: Main Results

Lemma (Productivity)
For every n ∈ N, the relation →n is strongly normalizing.

Theorem (Depth-by-depth Normalization)
For every term M there is a normal form N such that M =⇒ N .

Theorem (Complete Developments Theorem)
For every M and for every set R of redexes in M , there is a
complete development of R.

Theorem (Confluence)

If M , M =⇒ N and M =⇒ L, then there is P ∈ `Λ4S
∞ such that

N =⇒ P and L =⇒ P .

`Λ4S
∞: Main Results

Theorem (Causality)
If M ≡n N , M =⇒ L and N =⇒ P with L,P normal forms,
then L ≡n P .

Theorem
Primitive co-recursion can be embedded into `Λ4S

∞.

`Λ4S
∞: Main Results

Theorem (Causality)
If M ≡n N , M =⇒ L and N =⇒ P with L,P normal forms,
then L ≡n P .

Theorem
Primitive co-recursion can be embedded into `Λ4S

∞.

Future Work

I Complexity
I What is the class of functions (on streams) that can be

captured by `Λ4S
∞?

I Is there a restriction of `Λ∞ capturing one of the notions of
polynomial time from the literature (e.g.
[KawamuraCook2012])?

I Semantics
I Relational semantics?
I Game semantics with infinite, but total strategies?
I Ultra-metric spaces?

I Types
I Recursive Types?
I Linear Dependent Types [DLGaboardi2011]?

Future Work

I Complexity
I What is the class of functions (on streams) that can be

captured by `Λ4S
∞?

I Is there a restriction of `Λ∞ capturing one of the notions of
polynomial time from the literature (e.g.
[KawamuraCook2012])?

I Semantics
I Relational semantics?
I Game semantics with infinite, but total strategies?
I Ultra-metric spaces?

I Types
I Recursive Types?
I Linear Dependent Types [DLGaboardi2011]?

Thank you!

Questions?

