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(Af produces an output in finite time)
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Productivity

(A produces “the next” bit in finite time)
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Infinitary Term Rewriting — Example

flip : {0,1}* — {0,1}~.

Y= {O’ 1}
s €{0,1}* — 5 € InfTerms(X)

» Productivity can be checked effectively
[EndrullisGrabmayerHendriksIsiharaKlop2010].
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» It works well in the finitary case (as we all know).

» Already in usual A, computation over streams can be
modeled through infinitary interaction and laziness.

» As we know, 0, s and (-,-) can all be defined in A.
» Consider

N = Xz \y. Az (y, z(sy));
M,=Y Nn.
» For every n and for every v, M, v lazily evaluates to

<Il, Mn+1> :
» As a consequence, M, can be seen as representing the stream

n-(n+1)-(n+2)-(n+3)-...

» But infinitely many interactions with M, and infinitely many
(finite) computations are necessary to “discover” the value it
represents!

» We would like infinity to become a first-class citizen. ..



Infinity and the A-calculus: A, [KSSV199§]

» Terms are potentially infinite trees built from the usual
grammar:

M=z | .M | MN

» Analogously, one can define the language of terms as the
metric completion of A with respect to an appropriate
metric.

» Which metric?
» Two terms differ by 2% if they are equal up to depth n.
» Where does the depth grow? Whenever we go inside a term?

» Too much infinity:

» Productivity is not guaranteed (expected);

» Complete Developments Theorem does not hold;

» Confluence is lost (but can be recovered in Bohm
reduction).
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» Depending on how you define the depth of a term, you can

get 8 = 23 calculi.

» Examples:

Aot

M = x.aM
N = \x.N

Aooo

M= x.aM
N = \x.N

A1oo
M = (A\z.x)M
N = M \z.N
Ai11

M= (Az.x)M
N = A \x.N
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Suppose
M — My — My — ...
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Is this a reasonable reduction sequence? Yes, provided

» the sequence {M;};cn converges to a term N.
» the sequence {d;};en, where d; is the depth o of the redex
fired at M;, tends to infinity.

In this case we write M = N.

v

v

This can be generalized to reduction sequences of any
ordinal length, but:

Theorem (Compression)
If M =% N, then M =“ N.

» What does productivity mean here?
» Hereditary head normal forms!
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» Reintroduce duplication: /A.

» Extend A with non-linear abstractions in the form Alx.M;

» Mark any term N as duplicable by a new operator (called a
box): IN;

» Consider a new reduction rule: (AlzM.)IN — M{x/N}.

» Duplicate with care: /AL (ABLL ¢ASLE

» Put some constraint on non-linear abstractions and boxes.
» E.g. for every Alz.M, all the occurrences of x must be in the
scope of exactly one box, i.e. LVL(z, M) = 1.
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» Start from the terms of ZA.

» One could define terms of A, following exactly the same
ideas as the ones used to get Ao.

» Instead, let us follow:

Motto

Duplication and infinity are related, and should be treated with
the same tools.

> Idea:
» The operator 1M is the only place where depth (in the
sense of [KKSV1998]) increases;
» Terms in the form 1M (called coinductive boxes) are
duplicable.
> Moreover:

» The term | M (an inductive box) is itself duplicable;
» Depth does not increase while crossing the operator J.
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AMxz.M = no restrictions

Alx.M = no restrictions



(A Terms and Well-Formation Rules

M,N:=z | MM | Xe.M | Alz.M |
AMaM | IM | tM
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Type-2
Turing
Machines



So What?
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Drawing Inspiration from Light Logics [DanosJoinet1999]

TLL 4LL

ANz.zlz)!(Nz.zlx) (AMaz(zlx)) /(N2 (zlx))

J
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¢A%: Design Principles

» Coinductive boxes should be treated as in 4LL.

» For every Atxz.M, any occurrence of x appears in the scope
of at least one 7 operator.

» Inductive boxes should rather be constrained in such a
way as to guarantee termination at each depth.

» We can grab, as an example, the exponential discipline of
SLL [Lafont2004].
» For every A\|xz.M,
> either any occurrence of x in M appears outside the scope of
any boxes.
> or there is 1 occurrence of x in M, in the scope of exactly
one | operator.

» The rest of the calculus is the same as in /A.



(A% Well-Formation Rules
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¢A%: Main Results

Lemma (Productivity)

For every n € N, the relation —,, is strongly normalizing.

Theorem (Depth-by-depth Normalization)
For every term M there is a normal form N such that M — N.

Theorem (Complete Developments Theorem)

For every M and for every set R of redexes in M, there is a
complete development of R.

Theorem (Confluence)

If M, M = N and M = L, then there is P € (A*S such that
N = P and L = P.
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Theorem (Causality)

If M =, N, M = L and N = P with L, P normal forms,
then L =, P.

Theorem

Primitive co-recursion can be embedded into LA
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Future Work

» Complexity

» What is the class of functions (on streams) that can be
captured by /A%3?

» Is there a restriction of /A, capturing one of the notions of
polynomial time from the literature (e.g.
[KawamuraCook2012])?

» Semantics

» Relational semantics?

» Game semantics with infinite, but total strategies?

» Ultra-metric spaces?

» Types

» Recursive Types?
» Linear Dependent Types [DLGaboardi2011]?



Thank you!

Questions?



