
A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

An introduction to light logics,
or

Implicit complexity by taming the duplication

Patrick Baillot

CNRS / ENS Lyon

Shonan meeting on ICC and applications

November 6, 2013

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Introduction

Implicit computational complexity (ICC) :
characterizing complexity classes by programming languages /
calculi without explicit bounds,
but instead by restricting the constructions

either theory-oriented or certification-oriented

often conveniently formulated by:
(i) a general programming language, (ii) a criterion on
programs

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Various approaches to ICC

ramified recursion (Leivant, Leivant-Marion) / safe recursion
(Bellantoni-Cook)

variants of linear logic (light logics) this talk

interpretation methods

. . .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ICC vs. complexity analysis

specificities of ICC w.r.t. automatic complexity analysis:

complexity certificate (e.g. type)

modular

but

only rough complexity bounds

less general analysis (specific programming discipline)

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

The proofs-as-programs viewpoint

our reference language here is λ-calculus
untyped λ-calculus is Turing-complete

type systems can guarantee termination
ex: system F (polymorphic types)

proofs-as-programs correspondence
proof = type derivation

normalization = execution
intuitionistic logic ↔ system F

some characteristics of λ-calculus:
higher-order types
no distinction between data / program

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Linear logic

linear logic (LL):
fine-grained decomposition of intuitionistic logic
duplication is controlled with a specific connective !
(exponential)

variants of linear logic with different rules for ! have bounded
complexity: light logics
these logics (or subsystems) can be used as type systems for
λ-calculus
thus:
(i) general language= λ-calculus, (ii) criterion= typability

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Outline of the talk

1 a recap on λ-calculus and system F

2 elementary linear logic (ELL): elementary complexity

3 light linear logic (LLL): Ptime complexity

4 other linear logic variants

5 conclusion

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

λ-calculus

λ-terms:
t, u ::= x | λx .t | t u

notations: λx1x2.t for λx1.λx2.t
(t u v) for ((t u) v)
substitution: t[u/x ]

β-reduction:
1−→ relation obtained by context-closure of:

((λx .t)u)
1−→ t[u/x ]

→ reflexive and transitive closure of
1−→.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Typed λ-terms

system F types:

T ,U ::= α | T → U | ∀α.T

simple types: without ∀

simply typed terms, in Church-style:

xT (λxT .MU)T→U ((MT→U)NT )U

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Proofs-programs correspondence (Curry-Howard)

typed term ⇒ 2nd-order intuitionistic
logic proof

type formula

MB , with proof of A1, . . . ,An ` B
free variables xi : Ai , 1 ≤ i ≤ n

β-reduction of term normalization of proof
(cut elimination)

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Some types and data types

Polymorphic identity:
λxα.x : ∀α.(α→ α)

Church unary integers:
NF = ∀α.(α→ α)→ (α→ α)
example
2 = λf α→α.λxα.(f (f x)) : NF

Church binary words:
W F = ∀α.(α→ α)→ (α→ α)→ (α→ α)
example
< 1, 1, 0 > = λsα→α

0 .λsα→α
1 .λxα.(s1 (s1 (s0 x))) : W F

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Iteration

For each inductive data type an associated iteration principle.
For instance, for N = ∀α.(α→ α)→ (α→ α), we can define an
iterator iter :

iter = λfxn. (n f x) : (A→ A)→ A→ N → A, for any A

then
(iter t u n)→ (t (t . . . (t u) . . . ) (n times)

example:
double : N → N
exp = λn.(iter double 1 n) : N → N
tower = λn.(iter exp 1 n) : N → N

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Examples of terms

concatenation
conc = λuW .λvW .λs0.λs1.λx .(u s0 s1) (v s0 s1 x)

: W →W →W

length
length = λuW .λf α→α.(u f f )α→α

: W → N
repeated concatenation
rep = λnN .λvW .[n (conc v) nil ]W

: N →W →W

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

System F and termination

Theorem (Girard)

If a term is well typed in F , then it is strongly normalizable.

Thus a type derivation can be seen as a termination witness.
In particular, a term t : W →W represents a function on words
which terminates on all inputs.

Can we refine this system in order to guarantee feasible
termination, that is to say in polynomial time?

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Linear logic

Linear logic (LL) arises from the decomposition

A⇒ B ≡ !A ( B

the ! modality accounts for duplication (contraction)

! satisfies the following principles:

!A ( !A⊗ !A
A ` B

!A ` !B !A ( A
!A⊗ !B ( !(A⊗ B) !A ( !!A

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Elementary linear logic (ELL) [Girard95]

Language of formulas:

A,B := α | A ( B | !A | ∀α.A

Denote !kA for k occurrences of !.

The system is designed in such a way that the following
principles are not provable

!A ( A, !A (!!A

Defined to characterize elementary time complexity, that is to
say in time bounded by 2nk , for arbitrary k .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Elementary linear logic rules

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Forgetful map from ELL to F

Consider (.)− : ELL→ F defined by:

(!A)− = A−, (A ( B)− = A− → B−, (∀α.A)− = ∀α.A−, α− = α.

Proposition

If Γ `ELL t : A then t is typable in F with type A−.

If A− = T , say A is a decoration of T in ELL.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Data types in ELL

Church unary integers

system F: ELL:
NF NELL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( !(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words

system F: ELL:
W F W ELL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( !(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Representation of functions

a term t of type !kN (!lN, for some k, l , represents a
function over unary integers

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

multiplication
mult = λnmf .(n (m f ))

: N ( N ( N
squaring
square = λnf .(n (n f ))

: !N ( !N

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Iteration in ELL

recall the iterator iter :

iter = λf xn. (n f x) : !(A ( A) ( !A ( N ( !A

with (iter t u n)→ (t (t . . . (t u) . . . )) (n times)

examples:
double : N ( N
exp = (iter double 1) : N ( !N
remark: exp cannot be iterated; tower = (iter exp 1) non ELL
typable.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

From derivations to proof-nets

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Elementary linear logic rules, again

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ELL Proof-Nets

depth of an edge: number of boxes it is contained in.
depth of proof-net: maximal depth of its edges.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ELL proof-net : example

Church integer 3:

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ELL proof-net reduction

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Methodology

write programs with ELL typed λ-terms

evaluate them by:
compiling them into proof-nets, and then performing
proof-net reduction

beware:

proof-net reduction does not exactly match β-reduction
ELL does not satisfy subject reduction

but that’s all right for our present goal . . .
More about that in tomorrow’s talk, without proof-nets.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ELL proof-net reduction properties

We have

Proposition (Stratification)

The depth of an edge does not change during reduction.

Consequence: the depth d of a proof-net does not increase
during reduction.

Level-by-level reduction strategy:
R proof-net of depth d
perform reduction successively at depth 0, 1 . . . , d .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Level-by-level reduction of ELL proof-nets

let R be an ELL proof-net of depth d
|R|i = size at depth i
|R| = total size
round i : reduction at depth i
there are d + 1 rounds for the reduction of R

what happens during round i?
|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
but |R|i+1 can increase at each step, in fact it can double
hence round i can cause an exponential size increase

on the whole we have a 2
|R|
d size increase

this yields a O(2
|R|
d ) bound on the number of steps

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d , then it can be reduced to its

normal form in O(2
|R|
d ) steps.

Theorem (Representable functions)

The functions representable by a term of type N (!kN, where
k ≥ 0 , are exactly the elementary time functions.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Proof of the representability theorem

⊆ (soundness):
if t : N (!kN for some k, then t represents an elementary
function f .

proof: compute (tn) by proof-net reduction.

⊇ (completeness):
if f : N→ N is an elementary function, then there exists k
and t : N (!kN such that t represents f .

proof: simulation of O(2ni )-time bounded Turing machine, for
any i .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Taming the exponential blow-up?

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Light linear logic (LLL) [Girard95]

Language of formulas:

A,B := α | A ( B | ∀α.A | !A | §A

intuition: § a new modality for non-duplicable boxes

The following principles are still not provable

!A ( A, !A (!!A

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Light linear logic rules

rules (Id), (( i), (( e), (Cntr), (Weak): as in ELL.

new rules (! i), (! e), (§ i), (§ e):

x : B ` t : A
x :!B ` t :!A

(! i)
Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

Γ,∆ ` t : A

!Γ, §∆ ` t : §A (§ i)
Γ1 ` u : §A Γ2, x : §A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

where if Γ = x1 : B1, . . . , xk : Bk ,
†Γ = x1 : †B1, . . . , xk :: †Bk , for † =!, §.

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Forgetful map from LLL to ELL

Consider (.)e : LLL→ ELL defined by:

(§A)e =!Ae , (!A)e =!Ae

and other connectives unchanged.

Proposition

If Γ `LLL t : A then Γe `ELL t : Ae .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Data types in LLL

Church unary integers

system F: LLL:
NF NLLL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( §(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words

system F: LLL:
W F W LLL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( §(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Representation of functions

a term t of type !kN ( §lN, for some k, l , represents a
function over unary integers
!kW ( §lW : function over binary words.

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

double
double = λnfx .(n f ) (n f x)

: !N ( §N
concatenation
conc : W ( W ( W

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Iteration in LLL

we can type the iterator iter :

iter = λfxn. (n f x) : !(A ( A) ( !A ( N ( §A

examples:
(add3) : N ( N can be iterated

double :!N ( §N cannot be iterated

thus some exponentially growing terms are not typable

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

LLL proof-nets

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

LLL proof-net reduction

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Level-by-level reduction of LLL proof-nets

as in ELL we use a level-by-level strategy

let R be an LLL proof-net of depth d
round i : reduction at depth i
there are d + 1 rounds for the reduction of R

what happens during round i?
|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
yet |R|i+1 can increase:
during round i we can have a quadratic increase:

|R ′|i+1 ≤ |R|2i+1

this repeats d times, so on the whole we have a |R|2d size
increase

this yields a O(|R|2d ) bound on the number of steps

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

LLL complexity results

Theorem (Proof-net complexity)

If R is an LLL proof-net of depth d , then it can be reduced to its
normal form in O(|R|2d ) steps.

Thus at fixed depth d we have a polynomial bound.

Theorem (Representable functions)

The functions representable by a term of type W ( §kW , for
k ≥ 0, are exactly the functions of FP (polynomial time functions).

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Further comments about LLL

LLL and λ-calculus:
a proper type system for λ-calculus can be designed out of
LLL, which ensures a strong polynomial time bound on
β-reduction (and not only on proof-net reduction)

about expressivity:
the completeness result is an extensional one
but the intensional expressivity of LLL is quite limited

indeed: rich features (higher-order, polymorphism) but
”pessimistic” account of iteration . . .

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

A glimpse of a linear logics zoo

for P

soft linear logic: [Lafont04]

a simple system, but with more constrained programming
bounded linear logic: [GSS92]

!P(~x)A : more explicit, but more flexible

for EXPTIME and k-EXPTIME

ELL again: see tomorrow’s talk

for PSPACE

STAB [GMRdR08] : extends soft linear logic with a craftly typed
conditional

for LOGSPACE

IntML [DLS10]: evaluation by computation by interaction

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication



A recap on λ-calculus and system F
Elementary linear logic

Light linear logic
Other linear logic variants

Conclusions and perspectives

while ramified recursion is based on a stratification of data,
ELL / LLL are based on a stratification of programs

they yield type systems for λ-calculus

w.r.t. other ICC approaches:

handle higher-order computation
but limited intensional expressivity

relations with other ICC systems are still to explore

light logics are languages for higher-order computation, but
we only characterize first-order complexity classes . . .
what about higher-order complexity?

Patrick Baillot An introduction to light logics, or Implicit complexity by taming the duplication


	A recap on -calculus and system F
	Elementary linear logic
	Light linear logic
	Other linear logic variants

