A Fast Indexing Method for Protein 3–D Structure Searching

Today's talk

LB3D: A Fast Indexing Algorithm for Protein 3–D Structure Searching

- $O(n \log n)$ preprocessing
- O(n) space for indexing
 - Just a sorted array (like the suffix array)
- Practically very fast query
 - Average-case $O(m + n/\sqrt{m})$ -time query
 - > analyzed based on the *FJC* model
 - Practically faster than previous searching algorithms even if we include the preprocessing time
 - > though theoretically worse than the best-known $O(m + n/m^{1-\varepsilon})$ -time searching bound [Shibuya 2010]
 n: database size (#bases)

Genki Terashi, Tetsuo Shibuya, and Mayuko Takeda-Shitaka (2012) "LB3D: A Protein Three-Dimensional Substructure Search Program Based on the Lower Bound of a Root Mean Square Deviation Value," *J. Comput. Biol.*, 19(5).

m: query size (#bases)

Protein Structure

A protein

- A chain molecule consisting of 20 kinds of amino acids
- Folded into some structure

Primitive 3–D structure Representation

• A sequence of 3–D coordinates of the C $_{\alpha}$ atoms (or the backbone atoms)

Motivation

Structurally similar proteins

- Tend to have similar functions even if not similar at the residue level
- Important for functional analysis

PDB (Protein Data Bank)

- 94,000[~] entries (Sep 24, 2013)
 - Increasing rapidly (by 20% per year)

→ Faster searching algorithms desired!

Query: Protein structure

Protein Structure Database

How to Compare Two Structures?

RMSD: Root Mean Square Deviation

- The most widely-used similarity measure for protein structures
- Computable in O(n) time using SVD [Kabsch '76][Umeyama '91]
 - *n*: chain length
 - Correspondence of atoms is given

$$RMSD(A, B) = \min_{R, v} \sqrt{\sum_{i=1}^{n} |a_i - R \cdot (b_i - v)|^2 / n}$$

$$a_1$$

$$b_3$$

$$a_4$$

$$b_4$$

$$a_5$$

$$b_1$$

$$b_2$$

$$a_3$$

The Most Fundamental Problem

Database

Protein 3–D structures in a database

Query

A (sub)structure

Output

- All the similar substructures in the database
 - *i.e.,* RMSD ≤ some given bound *c*
 - No insertions/deletions

a protein (sub)structure

 \bigcirc

It's similar! (*i.e.* RMSD $\leq c$) A B B C C C

Protein Structure Database

History of the problem

• Naive O(nm) algorithm

- Compute RMSDs for all the n m + 1 substructures of length m in the database
- Theoretical worst-case $O(n \log m)$ algorithm [Schwartz et al. '87]
 - Utilized the FFT-based convolution technique
 - Practically not so faster than the naive algorithm
- Average-case O(n) algorithm [Shibuya RECOMB 2009]
 - Worst-case: *O*(*nm*)
 - Practically 5–100 times faster than the above algorithms
- Average-case $O(m + n/m^{1-\varepsilon})$ algorithm [Shibuya 2010]
 - Average-case complexity analyzed based on the FJC model
 - Worst-case: *O*(*nm*)
 - Not a practical algorithm, though

n: database size (#bases)*m*: query size (#bases)

Previous Indexing Algorithms

PSIST [Gao, Zaki 2005]

Today's talk

Utilizing the suffix tree, but cannot deal with the RMSD

• Geometric suffix tree [Shibuya, J.ACM 2010]

- An extension of the suffix tree that supports the 3-D protein structure searching based on the RMSD
- Too large construction time: $O(n^2)$

Some theoretical insights [Shibuya 2009]

- Average-case $O(m + n/\sqrt{m})$ -time query after $O(n \log n)$ preprocessing
 - Not a practical algorithm, though
 - Theoretically worse than the later $O(m + n/m^{1-\varepsilon})$ algorithm [Shibuya 2010]

the same bound

<u>A practical algorithm</u> that supports average-case $O(m + n/\sqrt{m})$ -time query after $O(n \log n)$ preprocessing

Shibuya's O(n) Algorithm

[Shibuya, RECOMB 2009]

Filtering-based expected linear time algorithm

- Compute lower bounds of the RMSDs (instead of hash values)
- Compute the actual RMSD for only the substructures with small enough lower bounds

c.f. Karp-Rabin algorithm for ordinary strings

Keys to the O(n)

Lower bound computation

should be done in linear time (in total)

Expected number of candidates after filtration

- should be less than O(n/m)
 - as checking requires O(m) time
- Model: FJC Model

c.f. Karp-Rabin (1981)

- Hash values is computable in linear time in total
- Checking requires only
 O(1) time
- Text: A random string

Model of 'Random' Chain-Molecule Structures

Freely-jointed chain (FJC) model

- The most basic model of chain molecules in molecular physics
 - Also called the '*Ideal chain* model' or the '*Random-walk* model'.
 - It explains behaviors of chain molecules very well, though it ignores many physical/chemical limitations
 - Collisions, edge angle limitation, existence of alpha helix/beta sheet, etc.

D_1 : A Lower Bound of the RMSD

- $\bullet D_1(P,Q)$
 - |H(P) H(Q)|/2
 - where H(P) = |G(P[1..m/2]) G(P[m/2+1..m])| (*m*: even number)
 - G(S) is the centroid (center of mass) of structure S
 - Consider n as an even number (to simplify the discussion)
 - It is always smaller than or equal to RMSD(P, Q)

D_1 can be Computed in Linear Time!

• The centroid of each substructure can be computed in O(1) time!

• O(n) in total (*n*: text length)

D_k : Extension of D_1

$D_2(P,Q) = [\{(D_1(P_1,Q_1)^2 + D_1(P_2,Q_2)^2)\}/2]^{1/2}$

- P_1, P_2 : The first/second half of P
- Q_1 , Q_2 :The first/second half of Q
- > is also a lower bound of RMSD(P, Q)

• Easily extendable to D_k (k>2)

• by dividing each structure into 2k parts $\rightarrow D_k$

/P/, /Q/ is assumed to be multiples of 4 (to simplify the discussion)

The Complexity of the D_k -Based Algorithm

Lower bound computation

 O(n)

Expected number of candidates

- $O(n/m^{k/2})$
 - under the FJC model

Total expected time complexity

- O(n) for any constant $k \ge 2$
 - $O(n\sqrt{m})$ in case k = 1

Experimental Results

- Target database: The whole PDB (September 5th, 2008)
 - 52,821 entries / 244,719 chains / 38,267,694 a.a.
- Query
 - 100 random substructures of each specified length, taken from PDB
 - Threshold: 1 Å
- Computation Time (sec)
 - Average computation time of 100 random queries
 - on 1 CPU of 1200MHz UltraSPARC III on SunFire 15K

Query Length	40	80	120	160	200
#Substructures	33,722,208	21,692,707	16,134,096	12,362,509	9,559,056
#Hits	38.1	32.9	27.3	16.0	23.2
D_1	98.9	92.4	75.6	59.4	60.0
D_2	58.9	36.4	32.8	27.3	25.7
D_3	74.5	25.5	17.3	14.2	12.9
Naive	447.0	442.0	415.2	378.9	342.5
FFT	531.9	463.1	399.8	330.6	293.0

[Shibuya 2009]

Keys to Faster Query

[Terashi, Shibuya, Takeda-Shitaka 2012]

Sort structures to enable binary search!

• Like the suffix arrays for strings

Use better lower bounds to reduce the number of candidates

Still should be computable in linear time, though

Sorting Structures

• D_1 -based candidates can be searched with binary search!

 on a sorted array of centroidcentroid distances H(T[i..i+m-1])

 $D_1 = |H(P) - H(Q)| / 2$

Lower Bound Variations

 If you divide each (sub)structures into <u>6 parts</u>, there are many ways to compute lower bounds

An example of a lower bound

Various possible combinations, here!

Better Lower bounds

We can use the maximum value among all the 15 different lower bounds!

- Computable in linear time (very fast!)
- D_3 is just one of these 15 lower bounds

Nearly tight!

LB3D Algorithm

Preprocessing (= Indexing)

- Just sort all the substructures by the l_{16} value
 - $O(n \log n)$ time

Query

- Find candidates whose $LB_{(1,6)} < c$
 - Binary search using the above index
 - #remaining candidates: $O(\frac{n}{\sqrt{m}})$
- Compute all the 15 (=constant) lower bounds for the candidates

•
$$O(m + \frac{n}{\sqrt{m}})$$
 time

- If all the lower bounds are smaller than the threshold, check the RMSD value
 - #remaining candidates: $O(\frac{n}{m^{1.5}}) \rightarrow O(m + \frac{n}{\sqrt{m}})$ time in total

Results

[Terashi, Shibuya, Takeda-Shitaka, 2012]

- Target database: The whole SCOP 1.75 database
 - 110,799 entries / 20,429,263 a.a.
- Query
 - 100 random substructures of each specified length, taken from PDB
 - Threshold: 1 Å
- Computation Time (sec)
 - Average computation time of 100 random queries
 - Including the preprocessing time (negligible, in fact)
 - on Intel Xeon E5506 CPU at 2.13 GHz / 12GByte Memory

\succ <u>2-50 time faster</u> than the D_3 -based algorithm

> 20-1,000 times faster than the naive algorithm

Query Length	40	80	120	160	200
#Substructures	16,139,532	12,009,140	8,606,303	6,179,494	4,433040
#Hits	62.6	44.2	37.6	33.6	29.0
D_3	4.755	1.168	0.620	0.564	0.460
LB3D	0.114	0.058	0.040	0.029	0.020

Linear-time protein 3-D structure searching algorithm [Shibuya 2009]

- ◆ 5-100 times faster than the naive algorithm
 - which has been the only choice for long years

LB3D: Practically even faster 3–D structure searching algorithm [Terashi, Shibuya, Takeda-Shitaka 2012]

- ◆ 2-50 times faster than the above linear-time algorithm
- ◆ 20-1,000 times faster than the naïve algorithm
 - Including the index construction time

Future Work

Improvement

- Better lower bounds
- Practical algorithm with better theoretical bounds
- Worst-case linear-time algorithm

Incorporating indels

• A theoretical linear-time algorithm exists [Shibuya, Jansson, Sadakane 2010]

Application to other data

• Motion data, audio data, music data, stock data, etc.

