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Today's talk 

 LB3D: A Fast Indexing Algorithm for Protein 3-D 
Structure Searching 
 𝑂(𝑛 log 𝑛) preprocessing 

 𝑂(𝑛) space for indexing  

 Just a sorted array (like the suffix array) 

 Practically very fast query 
 Average-case 𝑂(𝑚 + 𝑛

𝑚� )-time query 

 analyzed based on the FJC model 

 Practically faster than previous searching algorithms even if we include 
the preprocessing time 

 though theoretically worse than the best-known 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄ −time 

searching bound   [Shibuya 2010] 

Genki Terashi, Tetsuo Shibuya, and Mayuko Takeda-Shitaka (2012) “LB3D: A Protein Three-Dimensional Substructure 
Search Program Based on the Lower Bound of a Root Mean Square Deviation Value,” J. Comput. Biol., 19(5). 

𝑛: database size (#bases)  
𝑚: query size (#bases) 



Protein Structure 
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 A protein 
 A chain molecule consisting of 

20 kinds of amino acids 

 Folded into some structure 

 Primitive 3-D structure 
Representation 
 A sequence of 3-D coordinates 

of the Cα atoms (or the 
backbone atoms)  



Motivation 

 Structurally similar proteins 

 Tend to have similar functions even if not similar at the 
residue level 

 Important for functional analysis 

 PDB (Protein Data Bank) 

 94,000~ entries (Sep 24, 2013) 
 Increasing rapidly (by 20% per year) 

          → Faster searching algorithms desired! 

A B C 

Query: Protein structure Protein Structure Database 

It's similar! 



How to Compare Two Structures? 

 RMSD: Root Mean Square Deviation  
 The most widely-used similarity measure for protein 

structures 

 Computable in O(n) time using SVD  [Kabsch '76][Umeyama '91] 

 n: chain length 

 Correspondence of atoms is given 
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The Most Fundamental Problem 

 Database 

 Protein 3-D structures in a database 

 Query 

 A (sub)structure 

 Output 

 All the similar substructures in the database 

 i.e., RMSD ≤ some given bound c 
 No insertions/deletions 

A B C 

It's similar! 
(i.e. RMSD≤c) 

Search! 
Protein Structure Database 

Query 

a protein (sub)structure 



History of the problem 

 Naive O(nm) algorithm 
 Compute RMSDs for all the 𝑛 − 𝑚 + 1 substructures of length m in the database 

 Theoretical worst-case O(n log m) algorithm [Schwartz et al. '87] 

 Utilized the FFT-based convolution technique 

 Practically not so faster than the naive algorithm 

 Average-case O(n) algorithm  [Shibuya RECOMB 2009] 

 Worst-case: O(nm) 
 Practically 5-100 times faster than the above algorithms 

 Average-case 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄  algorithm [Shibuya 2010] 

 Average-case complexity analyzed based on the FJC model 

 Worst-case: O(nm) 
 Not a practical algorithm, though 

𝑛: database size (#bases)  
𝑚: query size (#bases) 



Previous Indexing Algorithms 

 PSIST [Gao, Zaki 2005] 

 Utilizing the suffix tree, but cannot deal with the RMSD 

 Geometric suffix tree [Shibuya, J.ACM 2010] 

 An extension of the suffix tree that supports the 3-D protein structure 
searching based on the RMSD 

 Too large construction time: O(n2) 

 Some theoretical insights [Shibuya 2009] 

 Average-case 𝑂(𝑚 + 𝑛
𝑚� )-time query after O(n log n) preprocessing 

 Not a practical algorithm, though 

 Theoretically worse than the later 𝑂 𝑚 + 𝑛
𝑚1−𝜀⁄  algorithm [Shibuya 2010] 

Today's talk 
the same 

bound 

A practical algorithm that supports average-case 𝑂(𝑚 + 𝑛
𝑚� )-time 

query after O(n log n) preprocessing 



Shibuya's O(n) Algorithm 

 Filtering-based expected linear time algorithm 
 Compute lower bounds of the RMSDs (instead of hash values) 

 Compute the actual RMSD for only the substructures with small enough 
lower bounds 

Pattern Structure P  

A Structure T in the Database 

[A lowerbound of RMSD(T[0..|P|-1], P)] 
[A lowerbound of RMSD(T[0..|P|-1], P)]  ≤ c 

[A lowerbound of RMSD(T[0..|P|-1], P)] 

Comput-
able in 

O(1) 
time 

for each 

Compute the RMSD only when the lower bound is ≤ c 

Candidate! 

[Shibuya, RECOMB 2009] 

c.f. Karp-Rabin algorithm for ordinary strings 



Keys to the O(n) 

 Lower bound computation 
 should be done in linear time (in total) 

 Expected number of candidates after filtration 
 should be less than O(n/m) 

 as checking requires O(m) time 

 Model: FJC Model 

c.f. Karp-Rabin (1981) 

hash(x[0..n-1]) = (x[0]dn-1 +  x[1]dn-2 +  x[2]dn-3 + … +  x[n-1]) mod q 

Pattern P → hash(P) 

A text of alphabetical characters 

hash(T[0..|P|-1])  
hash(T[1..|P|]) = hash(P) 

hash(T[2..|P|+1])  

Compu
t-able 

in O(1) 
time 

for 
each 

(q: some large prime number) 

Candidate! 

 Text: A random string 

 Hash values is 
computable in linear 
time in total 

 Checking requires only 
O(1) time 



Model of 'Random' Chain-Molecule Structures 

 Freely-jointed chain (FJC) model 
 The most basic model of chain molecules in molecular 

physics 
 Also called the 'Ideal chain model' or the 'Random-walk model'.  

 It explains behaviors of chain molecules very well, though it ignores 
many physical/chemical limitations 

 Collisions, edge angle limitation, existence of alpha helix/beta 
sheet, etc. 

Random walk 



D1: A Lower Bound of the RMSD 

 D1(P,Q) 

 |H(P) - H(Q  )| /2 
 where H(P) = |G(P[1..m/2]) - G(P[m/2+1..m])|    (m: even number) 
 G(S)  is the centroid (center of mass) of structure S 
 Consider n as an even number (to simplify the discussion) 

 It is always smaller than or equal to RMSD(P, Q) 

1/2 of the difference of  
these two distances (= D1) 



D1 can be Computed in Linear Time! 

 The centroid of each substructure can be 
computed in O(1) time! 
 O(n) in total  (n: text length) 

v w 

3-D Coordinates 

Centroid G1 

Centroid G2 

/)(12 vwGG −+=
: substructure length 







Dk : Extension of D1  

 D2(P,Q) = [{(D1(P1,Q1)2+D1(P2,Q2)2)}/2]1/2 
 P1, P2 : The first/second half of P 

 Q1, Q2 :The first/second half of Q 

  is also a lower bound of RMSD(P, Q)  

 Easily extendable to Dk (k>2) 
 by dividing each structure into 2k parts → Dk 

D1(P1,Q1) D1(P2,Q2) 

P1 
Q1 P2 

Q2 

D2 

|P|, |Q| is assumed to be multiples of 4  
(to simplify the discussion) 

Computable in O(n) time in total 
(k=const) 



The Complexity of the Dk-Based Algorithm 

 Lower bound computation 
 O(n) 

 Expected number of candidates 
 O(n/mk/2) 

 under the FJC model 

 Total expected time complexity 
 O(n)  for any constant  𝑘 ≥ 2 

 𝑂(𝑛 𝑚) in case 𝑘 = 1 



Experimental Results 
 Target database： The whole PDB (September 5th, 2008) 

 52,821 entries / 244,719 chains / 38,267,694 a.a. 

 Query 

 100 random substructures of each specified length, taken from PDB 

 Threshold: 1Å 

 Computation Time (sec) 

 Average computation time of 100 random queries 

 on 1 CPU of 1200MHz UltraSPARC III on SunFire 15K 

Query Length 40 80 120 160 200 

#Substructures 33,722,208 21,692,707 16,134,096 12,362,509 9,559,056 

#Hits 38.1 32.9 27.3 16.0 23.2 

D1 98.9 92.4 75.6 59.4 60.0 

D2 58.9 36.4 32.8 27.3 25.7 

D3 74.5 25.5 17.3 14.2 12.9 

Naive 447.0 442.0 415.2 378.9 342.5 

FFT 531.9 463.1 399.8 330.6 293.0 
(sec) 

[Shibuya 2009] 



Keys to Faster Query 

 Sort structures to enable binary search! 
 Like the suffix arrays for strings 

 Use better lower bounds to reduce the 
number of candidates 
 Still should be computable in linear time, though 

[Terashi, Shibuya, Takeda-Shitaka 2012] 



Sorting Structures 

 D1-based candidates can be 

searched with binary search! 
 on a sorted array of centroid-

centroid distances H(T[i..i+m-1]) 

D1 = |H(P) - H(Q) | / 2 

P 

Q 

H(Q) 

H(P) 

Text Structure 

Query Pattern Structure 



Lower Bound Variations 

 If you divide each (sub)structures into 6 parts, 
there are many ways to compute lower 
bounds 

𝑙15 𝑙𝑙15 

𝑙23 

𝑙46 𝑙𝑙23 

𝑙𝑙46 

LB(1,5)(2,3)(4,6) = { 𝑙15 − 𝑙𝑙15 2 + 𝑙23 − 𝑙𝑙23 2 + 𝑙46 − 𝑙𝑙46 2}/3 

Various possible combinations, here! 

An example of a lower bound 



Better Lower bounds 

 We can use the maximum value among all 
the 15 different lower bounds! 
 Computable in linear time (very fast!) 

 D3 is just one of these 15 lower bounds 

Nearly 
tight! 



LB3D Algorithm 

 Preprocessing (= Indexing) 
 Just sort all the substructures by the l16 value 

 O(n log n) time 

 Query 
 Find candidates whose LB(1,6) < c 

 Binary search using the above index 

 #remaining candidates: 𝑂( 𝑛
𝑚

) 

 Compute all the 15 (=constant) lower bounds for the candidates 

 𝑂(𝑚 + 𝑛
𝑚

) time 

 If all the lower bounds are smaller than the threshold, check the RMSD 
value 

 #remaining candidates: 𝑂( 𝑛
𝑚1.5) → 𝑂(𝑚 + 𝑛

𝑚
) time in total 



Results 

 Target database： The whole SCOP 1.75 database 

 110,799 entries / 20,429,263 a.a. 

 Query 

 100 random substructures of each specified length, taken from PDB 

 Threshold: 1Å 

 Computation Time (sec) 

 Average computation time of 100 random queries 

 Including the preprocessing time (negligible, in fact) 

 on Intel Xeon E5506 CPU at 2.13 GHz / 12GByte Memory 

Query Length 40 80 120 160 200 

#Substructures 16,139,532 12,009,140 8,606,303 6,179,494 4,433040 

#Hits 62.6 44.2 37.6 33.6 29.0 

D3 4.755 1.168 0.620 0.564 0.460 

LB3D 0.114 0.058 0.040 0.029 0.020 

 2-50 time faster than the D3-based algorithm 

 20-1,000 times faster than the naive algorithm 

[Terashi, Shibuya, Takeda-Shitaka, 2012] 



Summary 

 Linear-time protein 3-D structure searching 
algorithm  
 5-100 times faster than the naive algorithm 

 which has been the only choice for long years 

 LB3D: Practically even faster 3-D structure 
searching algorithm 
 2-50 times faster than the above linear-time algorithm 

 20-1,000 times faster than the naïve algorithm 
 Including the index construction time 

[Shibuya 2009] 

[Terashi, Shibuya, Takeda-Shitaka 2012] 



Future Work 

 Improvement 
 Better lower bounds 

 Practical algorithm with better theoretical bounds 

 Worst-case linear-time algorithm 

 Incorporating indels 
 A theoretical linear-time algorithm exists [Shibuya, Jansson, Sadakane 2010] 

 Application to other data 
 Motion data, audio data, music data, stock data, etc. 



Thank you! 
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