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• Indexing/searching highly repetitive data
– Problem, Motivation, What's been done

• “Solution”: Hybrid Indexing

• Some (preliminary) Experimental Results

• Future Directions

Outline



• Genomic Collections: 100's or 1000's of genomes of 
individuals of the same species

• Multi-author Collections: Wikipedia archives; Source code 
repositories

• Web crawls: copied/quoted/reused text and images; 
boilerplate

• Archives: Backup facilities; Personal online storage (like Google 
Drive)

Indexing Highly Repetitive Data



There are many indexes* for approximate pattern matching 
(read alignment) in 1 genome, but they don't scale well to 
1000s of genomes

___________________________
*BFAST, Bowtie, BWA, CUSHAW, GASSST, MAQ, Novoalign, SeqAlto, 
SeqMap, SHRiMP, Slider, Snap, SOAP, Stampy, Taipan, Velvet, etc.

Highly Repetitive Genomic Data



Find a way to scale current read aligners to multiple genomes 
that is independent of the aligner itself.

Choose an aligner (your favorite aligner); we provide an 
algorithmic tool to make it work for multiple genomes.

Aim (of this work)



We will cap – at index construction time – 
– Maximum pattern (read) length M, and
– Maximum number of alignment errors, K

For many biological applications patterns are “small”: 10s to 
100s of characters 

One restriction...



Our index is based on two main algorithmic tools...
– LZ77 parsing (or factorization)

• Widely used in data compression (gzip and 7zip)
• We use it for compression AND pattern matching

– 2-dimensional, 2-sided range reporting
• A notion from computational geometry

Two Algorithmic Tools



The Hybrid Index...
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Lempel-Ziv Parsing...



The Lempel-Ziv factorization (or parsing) breaks a string X of n 
symbols into z phrases.

If the parsing is up to position i, then next phrase is:
– X[i..j], the shortest substring starting at i that has not occurred 

at any position p
i
 < i in X

Lempel and Ziv (1977)
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If our collection is highly repetitive
– LZ77 phrases will be long and so,
– z, the overall number of phrases, will be small

In every genome after the first, phrases will be very long, and 
broken only by differences between individuals (usually SNPs)

LZ77 is automatically (and fairly efficiently) learning the 
structure of the database

Compression



Pattern Matching...



We seek ALL the occurrences of a pattern R in a collection X

LZ77 allows us to talk about two different types of pattern occurrence
– Occurrences crossing a phrase boundary (PRIMARY)
– Occurrences wholly contained in a phrase (SECONDARY)

Strategy: find all the PRIMARY occurrences and use them and the 
structure of the LZ77 parse to find the SECONDARYs 

Pattern Matching (read alignment)



Primary occurrences cross a phrase boundary...

Finding Primary Occurrences



Primary occurrences cross a phrase boundary...

Our restriction on pattern length |R| < M affords us the following strategy:
– For each phrase boundary i take the patch of M+K symbols to the right and 

left of it in X, i.e. X[i-M-K..i+M+K]
– Concatenate these patches to form a filtered string
– Index the filtered string with a regular read aligner

Finding Primary Occurrences



Primary occurrences cross a phrase boundary...

Our restriction on pattern length |R| < M affords us the following strategy:
– For each phrase boundary i take the patch of M+K symbols to the right and 

left of it in X, i.e. X[i-M-K..i+M+K]
– Concatenate these patches to form a filtered string
– Index the filtered string with a regular read aligner

Finding Primary Occurrences

1 2 3 …... 1000

1 2 3 …... 1000

LZ77

Patches of length M+K 
around each LZ77 phrase

Build a regular index 
on this filtered input



Secondary Occurrences...



Phrase Sources

The source for an LZ phrase is a previous occurrence 
of it's longest repeating prefix

1 2 3 4 5 6 7 8 9 10 11 12 13

a b a a b a b a a b a a b

(1,1) (2,3) (3,6) (2,2)

Intuition: we will use the phrase source structure to map primary 
occurrences forward, and so locate secondary occurrences



Phrase Sources on a Grid

(1,1) (2,3) (2,2)(3,6)



Secondary Occurrences

Start with a primary occurrence of ba

(primary because it crosses a phrase boundary)



Secondary Occurrences

Are there any phrase sources covering this 
primary occurrence?



Secondary Occurrences

We have a secondary occurrence of ba

(with each point on the grid we stored the starting 
position of the corresponding phrase – 5 in this case)



Secondary Occurrences

Are there phrase sources covering this 
secondary occurrence?



Secondary Occurrences

We have another secondary occurrence of ba



Secondary Occurrences

Are there phrase sources covering this 
secondary occurrence?



Secondary Occurrences

Repeat for each primary occurrence of ba



Secondary Occurrences



Reporting secondary occurrences this way is fast 
– O(loglogz) time per point in theory (predecessor + RMQ)
– Very fast in practice

Also space-efficient
– The grid stores z points, so we need only O(z) space
– 3z integers in practice: source start, source end, phrase start

2D, 2-sided Range Reporting



Reporting secondary occurrences this way is fast 
– O(loglogz) time per point in theory (predecessor + RMQ)
– Very fast in practice

Also space-efficient
– The grid stores z points, so we need only O(z) space
– 3z integers in practice: source start, source end, phrase start

The structure assumes NOTHING about how we found the primaries
– We are free to use any method

2D, 2-sided Range Reporting



Performance...



Experimental Setup

Disclaimer: these results are proof-of-concept only

Collection: 37 individual genomes of Saccharomyces cerevisiae, totalling 
440MB, from the Saccharomyces Genome Resequencing Project

Indexes:
– FM: a very fast FM-index by Gog and Petri (2013)
– Hybrid: FM used on filtered text, M+K = 100

Patterns: 3000 non-unary random patterns extracted from the collections, 
of lengths 10, 20, 40, 80 



Query times



Index Size vs. Collection Size



Filtered Text Size vs. (M+K)
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M+K = 220
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Future directions...



1) Removing the restriction on M+K

Restricting M+K is right at the heart of our approach

To support longer patterns: break the pattern into multiple 
pieces of length M then fuse the results of each small pattern



2) Alternatives to LZ77 parsing

LZ77 is very general – assumes nothing about collection 
structure. This has advantages.

If we remove the blindfold, we can exploit collection structure 
in (at least) two ways...

RLZ: only allow sources to be in the first genome
– Construction (parsing) is easier, index probably bigger

Alignment-based parsing: multiple alignment informs parsing
– Smaller index, much slower to construct



3) Parsing/Construction Bottleneck

Computing LZ77 for really large inputs has been a long-
standing open problem...
– ...and is the main reason experiments above were with only 440MB

Some breakthroughs here recently
– Joint work with Juha Karkkainen and Dominik Kempa 
– (to be submitted to ALENEX next week)



32Gb input
(40 human genomes)
4Gb memory
<5 hours

4) Construction – external memory LZ parsing

genomes



Conclusion

• Hybrid indexing is a generic way to scale read aligners (or any 
other pattern matching index)

• Only restriction is an upperbound on the pattern length, M 
and the number of errors/edits allowed, K

• Code + preprint available:
– puglisi@cs.helsinki.fi



Fin
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