An Application of Stream Compression — speeding up of data transmission —

Hiroshi Sakamoto

KYUTECH (Kyushu Institute of Technology)

joint work with

S.Maruyama (PFI) Y.Tabei (JST ERATO) T.Kida (Hokkaido University) K.Sadakane (NII) M.Takeda (Kyushu University) S.Yamagiwa (University of Tsukuba)

Introduction to SLP

Grammar compression: CFG generating a single string

SLP: a canonical form of grammar compression

• Straight Line Program (SLP) $X_k \rightarrow X_i X_j \ (k > i, j)$

• A naïve representation by array requires $2n \log n$ bits

SLP World

Wide relation to many researches

Why is SLP important?

• First: small space and simple algorithm

Recent Results on SLP

• [Tabei et al., CPM'13] **Lower bound**: The information-theoretic lower bound of SLP(*n*) in log((n-1)!) + 2n + o(n) bits

[Maruyama et al., SPIRE'13]
Upper bound: Fully-online construction of SLP(n) in

$$n\log n + 2n + o(n)$$
 bits

SLP(n): the set of SLPs with *n* characters

Lower bound: idea

- The information-theoretic lower bound is $\log |SLP(n)|$
- How to count?
- Idea: spanning tree decomposition of SLP

Lower bound: refinement of DAG

Induction on size *n*

Lower bound: example of refinement

Lower bound: result

• $S(n, T_L)$: subset of SLP(n) with fixed T_L

 $n \log n + n + o(n)$ bits lower bound

next question: Can we get such a small representation actually? \rightarrow our next result is YES by online

Upper bound: idea

[Maruyama et al., Algorithms 2012]
Post order partial parse tree (POPPT)

Upper bound: fully-online construction

[Maruyama et al., SPIRE'13]
Succinct representation by rank/select

Application to Network Acceleration

 Our challenge: fast data transmission by compressor on FPGA

