
Selection from Read-Only Memory

with Limited Workspace

Srinivasa Rao Satti

Seoul National University

Joint work with Amr Elmasry, Daniel
Dahl Juhl, and Jyrki Katajainen

Outline

� Models and Problem definition

� Results

� Wavelet stack

� Main ideas

� Conclusions

Space-constrained algorithms for read-only memory

� Model:

� The input is stored on read-only memory.

� A small amount of additional workspace is

given, to store intermediate results.

� (Output is written onto a write-only memory.)

� Interested in studying the trade-offs

between the amount of additional

workspace and the running time of the

algorithm.

Motivation and Applications

� Massive-parallel computing

Input data are shared with many processors.

Easy to design algorithms with read-only arrays,

(to avoid concurrent writes).

� Flash Memory
Reading is fast but writing is slow; no in-place updates;

writing also reduces the lifetime of the memory.

� Embedded software
e.g., digital camera, scanner, wireless sensor array

Input data are stored outside with random access.

� Theoretical curiosity.

Selection Problem

Input: An array A of n elements (integers)

Queries: select(i) returns the ith smallest

element in A

Models: A is stored in read-only memory;

S bits of additional workspace is allowed.

� Multipass streaming model: input can only
be accessed sequentially (several passes
over the input are allowed).

� Space-restricted random-access model:
random access to the input is allowed.

Memory model

� Word RAM model with word size Θ(log n)
supporting

� read/write

� addition, subtraction, multiplication, division

� left/right shifts

� AND, OR, XOR, NOT

operations on words in constant time.

(n is the “problem size”)

Results

Trade-off results: with O(S) bits, where S = Ω(lg3 N)

Frederickson: O(N lg* ((N lg N)/S) + N (lg N)/(lg S))

This paper: O(N lg* (N/S) + N (lg N)/(lg S))

Lower bounds

� [Chan, 2010]

� In the multipass streaming model, any

selection algorithm that uses a working space

of O(N) bits requires Ω(N lg* N) time.

� Our result separates the multipass

streaming model from the space-restricted

random-access model, as it “surpasses”

this lower bound.

General approach

When space is Ω(log2 N) bits

� Maintain a pair of filters, m and M such

that the ith element is between these

values. Elements within this range are

called active elements.

� In each iteration:

� Scan through the array to find an approximate

median of the active elements.

� Split the active elements into two halves using

the approximate median and recurse on the

appropriate half (setting one of the filters to be

the approximate median).

Using O(N) bits

� We can keep track of the active elements

after each level using bit vectors.

� We start with a bit vector of length N, and

shrink it by a constant factor after each

level. So, the total space is O(N) bits.

� Need to efficiently scan through the ones

or zeros in a bit vector. We build a wavelet

stack to do this. It uses a data structure

for a bit vector that supports rank/select.

Rank/Select on a bit vector

Given a bit vector B

rank1(i) = # 1’s up to position i in B

select1(i) = position of the i-th 1 in B

(similarly rank0 and select0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1

rank1(5) = 3
select1(4) = 9
rank0(5) = 2
select0(4) = 7Given a bit vector of length n, by storing

an additional o(n)-bit structure, we can
support all four operations in O(1) time.

Wavelet stack

With each bit vector, we also store an auxiliary structure to
support rank/select in constant time.

Checking whether an element is active at level h, or finding
the ith active element at level h takes O(h) time.

Selection using O(N) bits

“Pruning” algorithms

� Munro-Paterson find an (S/lgc N)-sample

in O(N lg S) time (and in one pass).

� Gives an O(N lg S + N lgS N) algorithm for

selection.

� Frederickson describes a way to prune a

set (of active elements) of size N/lg(a) N

elements down to N/lg(a-1) N elements in

O(N) time.

� Gives an O(N lg* S + N lgS N) time algorithm

for selection.

Selection with S bits

S = Ω(lg3 N)

� Apply Frederikson’s “pruning” algorithm

until there are only S active elements left.

� Takes O(N lg* (N/S)) time.

� Divide the input array into blocks of size

N/S, and use a wavelet stack of size O(S)

bits to maintain active blocks, and their

cardinalities.

� Overall time: O(N lg* (N/S) + N (lg N)/(lg S))

Conclusions

� We obtained a selection algorithm for the

random-access model that supports

queries in O(N) time using O(N) bits of

working space.

� Also obtained a better trade-offs when

we are given a working space of S bits,

for lg3 N ≤ S ≤ N.

� Determining the exact complexity of the

selection problem is still open.

References

� Blum, Floyd, Pratt, Rivest, Tarjan. JCSS-1973

� Timothy Chan. ACM TAlg-2010

� Frederickson. JCSS-1987

� Munro, Paterson. TCS-1980

� Munro, Raman. TCS-1996

� Raman, Ramnath. NJC-1999.

18

Thank you

