Selection from Read-Only Memory with Limited Workspace

> Srinivasa Rao Satti Seoul National University

Joint work with Amr Elmasry, Daniel Dahl Juhl, and Jyrki Katajainen

Models and Problem definition

Results

Wavelet stack

Main ideas

Conclusions

Space-constrained algorithms for read-only memory

Model:

- The input is stored on read-only memory.
- A small amount of additional workspace is given, to store intermediate results.
- Output is written onto a write-only memory.)
- Interested in studying the trade-offs between the amount of additional workspace and the running time of the algorithm.

Motivation and Applications

Massive-parallel computing

Input data are shared with many processors. Easy to design algorithms with read-only arrays, (to avoid concurrent writes).

Flash Memory

Reading is fast but writing is slow; no in-place updates; writing also reduces the lifetime of the memory.

Embedded software

e.g., digital camera, scanner, wireless sensor array Input data are stored outside with random access.

Theoretical curiosity.

Selection Problem

Input: An array A of n elements (integers)
Queries: select(i) returns the ith smallest
element in A

Models: A is stored in read-only memory;

S bits of additional workspace is allowed.

- Dultipass streaming model: input can only be accessed sequentially (several passes over the input are allowed).
- Space-restricted random-access model: random access to the input is allowed.

Memory model

■ Word RAM model with word size ⊖(log n) supporting

- read/write
- addition, subtraction, multiplication, division
- left/right shifts
- AND, OR, XOR, NOT

operations on words in constant time.

(n is the "problem size")

Results

	Workspace in bits	Running time
Munro and Raman	$\Theta(\lg N)$	$O(N^{1+\varepsilon})$
Raman and Ramnath	$\Theta(\lg^2 N)$	$O(N \lg^2 N)$
Frederickson	$\Theta(\lg^3 N)$	$O(N \lg N / \lg \lg N)$
Frederickson	$\Theta(N)$	$O(N \log^* N)$
Blum et al.	$\Theta(N \lg N)$	$\Theta(N)$
This paper	O(N)	$\Theta(N)$

Trade-off results: with O(S) bits, where $S = \Omega (Ig^3 N)$

Frederickson: O(N lg* ((N lg N)/S) + N (lg N)/(lg S))

This paper: O(N lg* (N/S) + N (lg N)/(lg S))

Lower bounds

[Chan, 2010]

In the multipass streaming model, any selection algorithm that uses a working space of O(N) bits requires Ω(N lg* N) time.

Our result separates the multipass streaming model from the space-restricted random-access model, as it "surpasses" this lower bound.

General approach

When space is $\Omega(\log^2 N)$ bits

- Maintain a pair of *filters*, m and M such that the ith element is between these values. Elements within this range are called *active* elements.
- In each iteration:
 - Scan through the array to find an *approximate median* of the active elements.
 - Split the active elements into two halves using the approximate median and recurse on the appropriate half (setting one of the filters to be the approximate median).

Using O(N) bits

We can keep track of the active elements after each level using bit vectors.

We start with a bit vector of length N, and shrink it by a constant factor after each level. So, the total space is O(N) bits.

Need to efficiently scan through the ones or zeros in a bit vector. We build a *wavelet stack* to do this. It uses a data structure for a bit vector that supports *rank/select*.

Rank/Select on a bit vector

Given a bit vector B

 $rank_1(i) = # 1's$ up to position i in B

 $select_1(i) = position of the i-th 1 in B$

(similarly rank₀ and select₀)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1

> $rank_{1}(5) = 3$ select₁(4) = 9 rank₀(5) = 2 select₀(4) = 7

Given a bit vector of length n, by storing an additional o(n)-bit structure, we can support all four operations in O(1) time.

With each bit vector, we also store an auxiliary structure to support *rank/select* in constant time.

Checking whether an element is active at level h, or finding the ith active element at level h takes O(h) time.

Selection using O(N) bits

Scanning all the active elements at level h takes O(h N/c^h) time, for some constant c.

$$\sum_{h=0}^{\infty} h N/c^h = O(N)$$

In ith iteration, the median algorithm and the partitioning takes O(i N/cⁱ) time.

Thus the total running time is O(N).

"Pruning" algorithms

- Munro-Paterson find an (S/lg^c N)-sample in O(N lg S) time (and in one pass).
 - Gives an O(N lg S + N lg_S N) algorithm for selection.
- Frederickson describes a way to prune a set (of active elements) of size N/lg^(a) N elements down to N/lg^(a-1) N elements in O(N) time.
 - Gives an O(N lg* S + N lg_s N) time algorithm for selection.

Selection with S bits

 $S = \Omega(Ig^3 N)$

Apply Frederikson's "pruning" algorithm until there are only S active elements left.

Takes O(N lg* (N/S)) time.

Divide the input array into blocks of size N/S, and use a wavelet stack of size O(S) bits to maintain active blocks, and their cardinalities.

Overall time: O(N lg* (N/S) + N (lg N)/(lg S))

Conclusions

- We obtained a selection algorithm for the random-access model that supports queries in O(N) time using O(N) bits of working space.
- Also obtained a better trade-offs when we are given a working space of S bits, for lg³ N ≤ S ≤ N.

Determining the exact complexity of the selection problem is still open.

References

- Blum, Floyd, Pratt, Rivest, Tarjan. JCSS-1973
- Timothy Chan. ACM TAlg-2010
- Frederickson. JCSS-1987
- Munro, Paterson. TCS-1980
- Munro, Raman. TCS-1996
- Raman, Ramnath. NJC-1999.

Thank you