Encoding top-k and range selection

Roberto Grossi¹ John Iacono² Gonzalo Navarro³ Rajeev Raman⁴ S. Srinivasa Rao⁵

Università di Pisa, Italy.

Polytechnic Institute of New York University, United States.

Universidad de Chile.

University of Leicester, UK.

Seoul National University, S. Korea.

NII Shōnan seminar #29, 27 September 2013 Some results were presented at ESA 2013.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0
			<u> </u>		
		RIVI	(J problem		
		RM	Q problem		

Given an array A[1..n], pre-process A to answer the query:

 $RMQ(I, r) = \arg \max_{I \le i \le r} A[i]$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

This is a *data structuring* problem.

- Preprocess input data to answer long series of queries.
- Want to minimize:
 - 1. Query time.
 - 2. Space usage of data structure.
 - 3. Time/space for pre-processing.

We do not consider updates to A.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

Encoding Model

- Preprocess input to get *index*, delete input.
- Queries can *only* read index.
- Minimize index size and query time.

Motivations:

- Values in A can be intrinsically uninteresting (e.g. document scores).
- Encoding size may be smaller than size of A and can fit in "local" or "faster" memory.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions o

- Trivial RMQ encoding uses $\Theta(n \log n)$ bits: can we do better?
- Yes: encoding size is $2n O(\log n)$ bits.
 - via Cartesian tree [Vuillemin, '80].
 - $\mathsf{RMQ} = \mathsf{LCA}$.
- Data structures:
 - 2n + o(n) bits, O(1) query time.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

[Fischer, Heun SICOMP'11],[Davoodi, R, Rao COCOON'12], building on [Harel, Tarjan, FOCS'83].

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	•0	000	00000	000000	0

Encoding top-k and range selection

• Given A[1..n] and k, encode A to answer the query:

top-k-pos(l, r): return positions of the k largest values in A[l..r].

- generalizes RMQ (case k = 1).
- lower bounds on encoding size.
- one-sided/prefix top-k queries top-k-pos(r) = top-k-pos(1, r).
- general two-sided queries.
- other variants of problem.

```
[First paper on encoding top-k-pos.]
```

- Given A[1..n] and κ, encode A to answer the query:
 select(k, l, r): return the position of the k-th largest value in A[l..r], for any k ≤ κ.
 - Related work by many authors including [Brodal and Jorgensen, ISAAC'09] [Jørgensen and Larsen, SODA'11], [Chan and Wilkinson, SODA'13].

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions				
000	00	000	00000	000000	0				
Our results									

- 1. One-sided/prefix variant (top-k-pos(r) queries):
 - encoding size $\Omega(n \log k)$ bits.
 - $n \log k + o(n \log k)$ bits, O(k) time or $O(k \log k)$ time sorted.
- 2. General two-sided range top-k queries:
 - O(kn) bits, $O(k^2)$ time.
 - $O(n \log k)$ bits, O(k) time.
- 3. Range selection queries:
 - $O(n \log k)$ bits and $O(\log k / \log \log n)$ time.
 - Matches time bound of [CW SODA'13] but uses less space. Time cannot be improved using n(log n)^{O(1)} space [JL SODA'11].
 - Lower bound for range selection [JL SODA'11]:
 - If you use B bits of space you need $\Omega(\log k / \log(B/n))$ time.
 - $O(n \log k)$ bits $\Rightarrow \Omega(\log k / \log \log k)$ time: we beat this.
 - Their lower bound is only for finding the *k*-th largest *value*.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

Lower bound on encoding size

Lemma

Any encoding for one-sided top-k queries must take $\Omega(n \log k)$ bits.

Proof: The index can encode (n/k) - 1 independent permutations over k elements $\Rightarrow \Omega((n/k) \cdot k \log k)$ bits $= \Omega(n \log k)$ bits.

Proof by example (k = 3).

$$A = \begin{bmatrix} 3 & 1 & 2 & 4 & 6 & 5 & 8 & 9 & 7 & \cdots \end{bmatrix}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Encode A. Now:

$$\begin{array}{l} \texttt{top-k-pos}(1,4) = \{1,3,4\} \Rightarrow A[2] = 1.\\ \texttt{top-k-pos}(1,5) = \{1,4,5\} \Rightarrow A[3] = 2.\\ \texttt{top-k-pos}(1,6) = \{4,5,6\} \Rightarrow A[1] = 3. \end{array}$$

Introduction 000	Results 00	One-sided Problem ○●○	Two-sided Problem	Encoding range selection	Conclusions O
	_				

Encoding one-sided top-k queries

Use k colours +1 "null" (= black) colour.

- First k elements assigned colours arbitrarily.
- Each new element gets colour of "ejected" element ("null" if none).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection 000000	Conclusions
000	00	○○●	00000		O
	Е	ncoding one	e-sided top- <i>k</i>	queries	

To answer top-k-pos(j) queries, find the first occurrence before j of each colour. For example top-k-pos(7) = $\{6, 4, 1\}$.

Data structure for finding colours uses succinct DS^{TM} technology, space used is $n \log k + o(n \log k)$ bits, time is O(k).

Reports in unsorted order, but can compare colours, so can sort in $O(k \log k)$ time.

Open

 $n \log k + o()$ space usage, O(k) sorted reporting for 1-sided queries?

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions of the selection Selec

Now we want the general problem: top-k-pos(i, j).

- Basic approach: construct the Cartesian tree of top-k elements in $A[i], \ldots, A[j]$ in O(k) time.
- Requires A to be available!
- It is enough if for each *i*, we store pointers to to *k* preceding and succeeding larger elements.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Specifically:

- Define arrays of pointers $P_0[1..n]$ to $P_k[1..n]$ as follows.
- $P_0[j] = j$ for all j = 1, ..., n.
- $P_{k+1}[j] = \max(\{i, i < P_k[j] \land a_i > a_j\} \cup \{0\})$.

Naive representation of these arrays takes $O(kn \log n)$ bits.

- Level *i* pointers are non-crossing.
- Can be encoded using 4n + o(n) bits $\rightarrow O(kn)$ bits overall.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Can obtain $P_{i+1}[j]$ from $P_i[j]$ in O(1) time.
- Find top-k in $O(k^2)$ time overall.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions 000 000 000 000000 0

Optimal two-sided queries

- View A geometrically in 2D: $A[i] = y \Rightarrow (i, y)$.
- Use idea of *shallow cutting* for top-*k* [JL SODA'11].
- Take set of *n* given points and decompose into O(n/k) slabs each containing O(k) points such that:
 - For any 2-sided query top-k-pos(*I*, *r*) ∃ slab such that it and two other adjacent slabs contain the top-*k* elements in *A*[*I*..*r*].
 - Gives a kind of encoding: store relative order among these O(k) elements: O(k log k) bits/slab = O(n log k) bits, optimal!

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• But we need to represent the shallow cutting!

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x = +\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has 2k 1 points, split and create boundaries as follows:
 - median *x*-coordinate as vertical boundary.
 - bottom *y*-coordinate as bottom boundary.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x = +\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has 2k 1 points, split and create boundaries as follows:
 - median *x*-coordinate as vertical boundary.
 - bottom *y*-coordinate as bottom boundary.

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x = +\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has 2k 1 points, split and create boundaries as follows:
 - median *x*-coordinate as vertical boundary.
 - bottom *y*-coordinate as bottom boundary.

- At end: O(n/k) slabs each with $\Theta(k)$ elements.
- Slabs naturally form full binary "tree of slabs" T_s .
- Naive encoding of x-coordinates requires $O(k \log n)$ bits/slab, or $O(n \log n)$ bits overall.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection 000000	Conclusions
000	00	000	0000●		O

Encoding the slabs

- Retrieve resolving slab: LCA.
- Retrieve x-coordinates of slab boundaries: top-2 pointers, O(n) bits. slab bottom: ?
- Retrieve x-coordinates of points + answer queries: perform RMQs using CT of A, guided by O(k log k) bits of ordering info.

Theorem

There is an encoding of size $O(n \log k)$ bits that supports top-k-pos queries in O(k) time.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	●00000	0

Encoding range selection

Problem

Given A[1..n] and κ , encode A to answer select(k, l, r) which returns the position of the k-th largest value in A[l..r], for any $k \leq \kappa$.

Overall approach is similar:

- Create κ -shallow cutting.
- For O(κ) points in each slab, store range selection data structure: O(κ log κ) bits.
- Find resolving slab for given query and use slab's range selection data structure to answer query.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• Convert answer back to "global" coordinates.

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions o

Previous shallow cutting representation was space optimal but could only enumerate all $O(\kappa)$ x-coordinates in a slab in $O(\kappa)$ time. We want $O(\log k / \log \log n)$ query time.

 \triangleright We need a more sophisticated representation of slabs which can:

- in *O*(1) time, retrieve the *i*-th largest *x*-coordinate in the slab (access query).
- in O(log k/log log n) time, perform predecessor search for l and r among x coordinates in a slab.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Previous result by [CW SODA'13]

• $O(n \log \kappa + n \log \log n + (n \log n)/\kappa)$ bits of space.

non-optimal terms

Introduction Results One-sided Problem Two-sided Problem Encoding range selection Conclusions 000 00 00000 000000 000000 00

Tree Partitioning and Marking

We partition the tree of slabs T_s . T_s has $n' = O(n/\kappa)$ nodes.

- Let s(v) be the number of descendants of v in T_s .
- Let $t_0 = n'$ and $t_{i+1} = \lceil \log_2 t_i \rceil$, stopping when $t_z = 1$.
- A node v is level i if $t_i^2 \leq s(v) < t_{i-1}^2$.
 - Node levels decrease from leaf to root.
 - ▷ x-coordinates in a level *i* node take $O(\log t_{i-1}^2) = O(t_i)$ bits.

Mark an internal node in T_s if:

- 1. it is level i and both its children are level > i.
- 2. it is level *i* and both its children are level *i*.
- 3. it is level i and its parent is level < i.

Lemma

The number of marked level *i* nodes is $O(n'/t_i^2) = O(n/(\kappa t_i^2))$.

For each marked node we store all its *x*-coordinates explicitly. Sum over all level *i* nodes is $O((n/(\kappa t_i^2)) \cdot \kappa t_i) = O(n/t_i)$ bits $\Rightarrow O(n)$ bits overall.

Sac

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

Tree Partitioning and Marking

Marking Rule

- v is marked if:
- 1. it is level i and both children are level > i.
- 2. it is level *i* and both children are level *i*.

3. it is level i and parent is level < i.

- Each unmarked level *i* node has:
 - one *marked* child at level < i.
 - one child at level i.
- Unmarked level *i* nodes form *paths* fringed by marked nodes.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

SQA

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

 \triangleright Need to store the x-coordinates of points in an unmarked node v.

• Points in v are original or inherited.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000		O

 \triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

 \triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v's original points lie cost O(n) bits summed over all unmarked nodes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

SQA

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	0

 \triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v's original points lie cost O(n) bits summed over all unmarked nodes.
- For inherited points *p*, use *O*(*κ*) colors (cf. 1-sided top-*k*) to find the ancestor where *p* is original: *O*(*n* log *κ*) bits.

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	00000	0

Modulo many details (succinct DS^{TM} technology):

Lemma

We can encode the cells of the shallow cutting to support access queries in ${\cal O}(1)$ time.

Implies:

- Encoding for range selection using $O(n \log \kappa)$ bits in $O(\log k)$ time.
- Can return top-k, for any $k \leq \kappa$ in O(k) time.

No details given:

Theorem

There is an encoding for range selection that takes $O(n \log \kappa)$ bits and supports range selection in $O(\log k / \log \log n)$ bits.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Introduction	Results	One-sided Problem	Two-sided Problem	Encoding range selection	Conclusions
000	00	000	00000	000000	•

Conclusions and Open Problems

Conclusions:

- Gave optimal, non-trivial, encodings for range selection and range top-k.
- Improved prevous bounds, "broke" lower bound.

Open problems:

- Sorted reporting in one-sided case.
- Exact constant factors (progress for k = 2).
- Can we extend this to partially ordered A? (N. Yasuda)
- What about average-case encoding complexity? (S.-I. Minato)
- Obvious pre-processing times are O(n log k) for the one-sided case and O(n log n) for the 2-sided case. Can this be improved? (N. Yasuda)