Encoding top-\(k\) and range selection

Roberto Grossi\(^1\) John Iacono\(^2\) Gonzalo Navarro\(^3\)
Rajeev Raman\(^4\) S. Srinivasa Rao\(^5\)

Università di Pisa, Italy.
Polytechnic Institute of New York University, United States.
Universidad de Chile.
University of Leicester, UK.
Seoul National University, S. Korea.

NII Shōnan seminar #29, 27 September 2013
Some results were presented at ESA 2013.
Given an array $A[1..n]$, pre-process A to answer the query:

$$RMQ(l, r) = \arg \max_{l \leq i \leq r} A[i]$$

$A = \begin{bmatrix} 10 & 8 & 3 & 1 & 6 & 2 & 9 & 5 & 4 & 7 \end{bmatrix}$ \hspace{1cm} RMQ(3, 6) = 5.$

This is a *data structuring* problem.

- Preprocess input data to answer long series of queries.
- Want to minimize:
 1. Query time.
 2. Space usage of data structure.
 3. Time/space for pre-processing.

We do not consider updates to A.
Encoding Model

- Preprocess input to get index, delete input.
- Queries can only read index.
- Minimize index size and query time.

Motivations:
- Values in A can be intrinsically uninteresting (e.g. document scores).
- Encoding size may be smaller than size of A and can fit in “local” or “faster” memory.
• Trivial RMQ encoding uses $\Theta(n \log n)$ bits: can we do better?

• Yes: encoding size is $2n - O(\log n)$ bits.
 • via Cartesian tree [Vuillemin, '80].
 • RMQ = LCA.
• Data structures:
 • $2n + o(n)$ bits, $O(1)$ query time.

[Fischer, Heun SICOMP’11], [Davoodi, R, Rao COCOON’12], building on [Harel, Tarjan, FOCS’83].
Encoding top-k and range selection

- Given $A[1..n]$ and k, encode A to answer the query:
 \[\text{top-k-pos}(l, r) : \text{return positions of the } k \text{ largest values in } A[l..r]. \]
 - generalizes RMQ (case $k = 1$).
 - lower bounds on encoding size.
 - one-sided/prefix top-k queries $\text{top-k-pos}(r) = \text{top-k-pos}(1, r)$.
 - general two-sided queries.
 - other variants of problem.

 [First paper on encoding top-k-pos.]

- Given $A[1..n]$ and κ, encode A to answer the query:
 \[\text{select}(k, l, r) : \text{return the position of the } k\text{-th largest value in } A[l..r], \text{ for any } k \leq \kappa. \]
 - Related work by many authors including [Brodal and Jorgensen, ISAAC’09] [Jørgensen and Larsen, SODA’11], [Chan and Wilkinson, SODA’13].
Our results

1. One-sided/prefix variant (\text{top}-k-\text{pos}(r) queries):
 - encoding size $\Omega(n \log k)$ bits.
 - $n \log k + o(n \log k)$ bits, $O(k)$ time or $O(k \log k)$ time sorted.

2. General two-sided range top-k queries:
 - $O(kn)$ bits, $O(k^2)$ time.
 - $O(n \log k)$ bits, $O(k)$ time.

3. Range selection queries:
 - $O(n \log k)$ bits and $O(\log k / \log \log n)$ time.
 - Matches time bound of [CW SODA’13] but uses less space. Time cannot be improved using $n(\log n)^{O(1)}$ space [JL SODA’11].
 - Lower bound for range selection [JL SODA’11]:
 - If you use B bits of space you need $\Omega(\log k / \log(B/n))$ time.
 - $O(n \log k)$ bits \Rightarrow $\Omega(\log k / \log \log k)$ time: we beat this.
 - Their lower bound is only for finding the k-th largest value.
Lower bound on encoding size

Lemma

Any encoding for *one-sided* top-\(k\) queries must take \(\Omega(n \log k)\) bits.

Proof: The index can encode \((n/k) - 1\) independent permutations over \(k\) elements \(\Rightarrow \Omega((n/k) \cdot k \log k)\) bits = \(\Omega(n \log k)\) bits.

Proof by example \((k = 3)\).

\[
A = \begin{bmatrix} 3 & 1 & 2 & 4 & 6 & 5 & 8 & 9 & 7 & \ldots \end{bmatrix}
\]

Encode \(A\). Now:

- \(\text{top-}k\text{-pos}(1, 4) = \{1, 3, 4\} \Rightarrow A[2] = 1\).
- \(\text{top-}k\text{-pos}(1, 5) = \{1, 4, 5\} \Rightarrow A[3] = 2\).
- \(\text{top-}k\text{-pos}(1, 6) = \{4, 5, 6\} \Rightarrow A[1] = 3\).
Encoding one-sided top-\(k\) queries

Use \(k\) colours +1 "null" (= black) colour.

- First \(k\) elements assigned colours arbitrarily.
- Each new element gets colour of "ejected" element ("null" if none).

\[
A = \begin{array}{cccccccccc}
6 & 4 & 2 & 10 & 3 & 7 & 5 & 8 & 9 & 1 \\
\end{array}
\]

\[
\Rightarrow \begin{array}{cccccccccc}
\,
& \,
& \,
& \,
& \,
& \,
& \,
& \,
& \,
& \,
& \end{array}
\]
Encoding one-sided top-k queries

To answer $\text{top-}k\text{-pos}(j)$ queries, find the first occurrence before j of each colour. For example $\text{top-}k\text{-pos}(7) = \{6, 4, 1\}$.

Data structure for finding colours uses succinct DS™ technology, space used is $n \log k + o(n \log k)$ bits, time is $O(k)$.

Reports in unsorted order, but can compare colours, so can sort in $O(k \log k)$ time.

Open

$n \log k + o()$ space usage, $O(k)$ sorted reporting for 1-sided queries?
Encoding two-sided queries

Now we want the general problem: top-k-pos\((i, j)\).

- Basic approach: construct the Cartesian tree of top-\(k\) elements in \(A[i], \ldots, A[j]\) in \(O(k)\) time.
- Requires \(A\) to be available!
- It is enough if for each \(i\), we store pointers to to \(k\) preceding and succeeding larger elements.

Specifically:

- Define arrays of pointers \(P_0[1..n]\) to \(P_k[1..n]\) as follows.
 - \(P_0[j] = j\) for all \(j = 1, \ldots, n\).
 - \(P_{k+1}[j] = \max (\{i, \ i < P_k[j] \land a_i > a_j\} \cup \{0\})\).

Naive representation of these arrays takes \(O(kn \log n)\) bits.
Encoding pointers

\[
A : \begin{array}{cccccccccccc}
10 & 8 & 3 & 1 & 6 & 2 & 9 & 5 & 4 & 7 \\
\end{array}
\]

\[
P_0 : \begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[
P_1 : \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 2 & 5 & 1 & 7 & 8 & 7 \\
\end{array}
\]

\[
P_2 : \begin{array}{cccccccccccc}
0 & 0 & 1 & 2 & 1 & 3 & 0 & 5 & 7 & 2 \\
\end{array}
\]

- Level \(i \) pointers are non-crossing.
- Can be encoded using \(4n + o(n) \) bits \(\rightarrow O(kn) \) bits overall.
- Can obtain \(P_{i+1}[j] \) from \(P_i[j] \) in \(O(1) \) time.
- Find top-\(k \) in \(O(k^2) \) time overall.
Optimal two-sided queries

- View A geometrically in 2D: $A[i] = y \Rightarrow (i, y)$.
- Use idea of *shallow cutting* for top-k [JL SODA’11].
- Take set of n given points and decompose into $O(n/k)$ slabs each containing $O(k)$ points such that:
 - For any 2-sided query $\text{top-}k\text{-pos}(l, r)$ \exists slab such that it and two other adjacent slabs contain the top-k elements in $A[l..r]$.
 - Gives a kind of encoding: store relative order among these $O(k)$ elements: $O(k \log k)$ bits/slab $= O(n \log k)$ bits, optimal!
- But we need to represent the shallow cutting!
Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x = +\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has $2k - 1$ points, split and create boundaries as follows:
 - median x-coordinate as vertical boundary.
 - bottom y-coordinate as bottom boundary.
- Example: $k = 3$.
Shallow cutting (pre-processing)

- Sweep a horizontal line down from \(x = +\infty \).
- Initially just one slab. Place points as encountered into their slab.
- When slab has \(2k - 1 \) points, split and create boundaries as follows:
 - median \(x \)-coordinate as vertical boundary.
 - bottom \(y \)-coordinate as bottom boundary.
- Example: \(k = 3 \).
Shallow cutting (pre-processing)

- Sweep a horizontal line down from \(x = +\infty \).
- Initially just one slab. Place points as encountered into their slab.
- When slab has \(2k - 1 \) points, split and create boundaries as follows:
 - median \(x \)-coordinate as vertical boundary.
 - bottom \(y \)-coordinate as bottom boundary.
- Example: \(k = 3 \).
- At end: \(O(n/k) \) slabs each with \(\Theta(k) \) elements.
- Slabs naturally form full binary “tree of slabs” \(T_s \).
- Naive encoding of \(x \)-coordinates requires \(O(k \log n) \) bits/slab, or \(O(n \log n) \) bits overall.
Encoding the slabs

- Retrieve resolving slab: LCA.
- Retrieve x-coordinates of slab boundaries: top-2 pointers, $O(n)$ bits. slab bottom: ?
- Retrieve x-coordinates of points + answer queries: perform RMQs using CT of A, guided by $O(k \log k)$ bits of ordering info.

Theorem

There is an encoding of size $O(n \log k)$ bits that supports top-k-pos queries in $O(k)$ time.
Encoding range selection

Problem

Given $A[1..n]$ and κ, encode A to answer $\text{select}(k, l, r)$ which returns the position of the k-th largest value in $A[l..r]$, for any $k \leq \kappa$.

Overall approach is similar:

- Create κ-shallow cutting.
- For $O(\kappa)$ points in each slab, store range selection data structure: $O(\kappa \log \kappa)$ bits.
- Find resolving slab for given query and use slab’s range selection data structure to answer query.
- Convert answer back to “global” coordinates.
Encoding shallow cutting

Previous shallow cutting representation was space optimal but could only enumerate all $O(\kappa)$ x-coordinates in a slab in $O(\kappa)$ time. We want $O(\log k / \log \log n)$ query time.

- We need a more sophisticated representation of slabs which can:
 - in $O(1)$ time, retrieve the i-th largest x-coordinate in the slab (access query).
 - in $O(\log k / \log \log n)$ time, perform predecessor search for l and r among x coordinates in a slab.

Previous result by [CW SODA’13]

- $O(n \log \kappa + n \log \log n + (n \log n)/\kappa)$ bits of space.
 - non-optimal terms
Tree Partitioning and Marking

We partition the tree of slabs T_s. T_s has $n' = O(n/\kappa)$ nodes.

- Let $s(v)$ be the number of descendants of v in T_s.
- Let $t_0 = n'$ and $t_{i+1} = \lceil \log_2 t_i \rceil$, stopping when $t_z = 1$.
- A node v is level i if $t_i^2 \leq s(v) < t_{i-1}^2$.
 - Node levels decrease from leaf to root.
 - x-coordinates in a level i node take $O(\log t_{i-1}^2) = O(t_i)$ bits.

Mark an internal node in T_s if:

1. it is level i and both its children are level $> i$.
2. it is level i and both its children are level i.
3. it is level i and its parent is level $< i$.

Lemma

The number of marked level i nodes is $O(n'/t_i^2) = O(n/(\kappa t_i^2))$.

For each marked node we store all its x-coordinates explicitly. Sum over all level i nodes is $O((n/(\kappa t_i^2)) \cdot \kappa t_i) = O(n/t_i)$ bits ⇒ $O(n)$ bits overall.
Tree Partitioning and Marking

Marking Rule

v is marked if:
1. it is level i and both children are level $> i$.
2. it is level i and both children are level i.
3. it is level i and parent is level $< i$.

• Each unmarked level i node has:
 • one *marked* child at level $< i$.
 • one child at level i.

• Unmarked level i nodes form *paths* fringed by marked nodes.
Need to store the \(x \)-coordinates of points in an unmarked node \(v \).

- Points in \(v \) are original or inherited.
Need to store the x-coordinates of points in an unmarked node v.

- Points in v are *original* or *inherited*.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
Need to store the x-coordinates of points in an unmarked node v.

- Points in v are \textit{original} or \textit{inherited}.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v’s original points lie cost $O(n)$ bits summed over all unmarked nodes.
Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v’s original points lie cost $O(n)$ bits summed over all unmarked nodes.
- For inherited points p, use $O(\kappa)$ colors (cf. 1-sided top-k) to find the ancestor where p is original: $O(n \log \kappa)$ bits.
Modulo many details (succinct DS™ technology):

Lemma

We can encode the cells of the shallow cutting to support access queries in $O(1)$ time.

Implies:

- Encoding for range selection using $O(n \log \kappa)$ bits in $O(\log k)$ time.
- Can return top-k, for any $k \leq \kappa$ in $O(k)$ time.

No details given:

Theorem

There is an encoding for range selection that takes $O(n \log \kappa)$ bits and supports range selection in $O(\log k / \log \log n)$ bits.
Conclusions and Open Problems

Conclusions:

- Gave optimal, non-trivial, encodings for range selection and range top-k.
- Improved previous bounds, “broke” lower bound.

Open problems:

- Sorted reporting in one-sided case.
- Exact constant factors (progress for $k = 2$).
- Can we extend this to partially ordered A? (N. Yasuda)
- What about average-case encoding complexity? (S.-I. Minato)
- Obvious pre-processing times are $O(n \log k)$ for the one-sided case and $O(n \log n)$ for the 2-sided case. Can this be improved? (N. Yasuda)