Encoding top- k and range selection

Roberto Grossi ${ }^{1}$ John lacono ${ }^{2}$ Gonzalo Navarro ${ }^{3}$ Rajeev Raman ${ }^{4}$ S. Srinivasa Rao ${ }^{5}$

Università di Pisa, Italy.
Polytechnic Institute of New York University, United States.
Universidad de Chile.
University of Leicester, UK.
Seoul National University, S. Korea.

NII Shōnan seminar \#29, 27 September 2013
Some results were presented at ESA 2013.

RMQ problem

Given an array $A[1 . . n]$, pre-process A to answer the query:

$$
R M Q(I, r)=\arg \max _{I \leq i \leq r} A[i]
$$

$A=$| 10 | 8 | 3 | 1 | 6 | 2 | 9 | 5 | 4 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad R M Q(3,6)=5$.

This is a data structuring problem.

- Preprocess input data to answer long series of queries.
- Want to minimize:

1. Query time.
2. Space usage of data structure.
3. Time/space for pre-processing.

We do not consider updates to A.

Encoding Model

- Preprocess input to get index, delete input.
- Queries can only read index.
- Minimize index size and query time.

Motivations:

- Values in A can be intrinsically uninteresting (e.g. document scores).
- Encoding size may be smaller than size of A and can fit in "local" or "faster" memory.

Encoding RMQ

- Trivial RMQ encoding uses $\Theta(n \log n)$ bits: can we do better?
- Yes: encoding size is $2 n-O(\log n)$ bits.
- via Cartesian tree [Vuillemin, '80].
- $\mathrm{RMQ}=\mathrm{LCA}$.
- Data structures:
- $2 n+o(n)$ bits, $O(1)$ query time.

[Fischer, Heun SICOMP'11],[Davoodi, R, Rao COCOON'12], building on [Harel, Tarjan, FOCS'83].

Encoding top- k and range selection

- Given $A[1 . . n]$ and k, encode A to answer the query: top-k-pos(I,r): return positions of the k largest values in $A[/ . . r]$.
- generalizes RMQ (case $k=1$).
- lower bounds on encoding size.
- one-sided/prefix top- k queries top-k-pos $(r)=$ top- $k-p o s(1, r)$.
- general two-sided queries.
- other variants of problem.
[First paper on encoding top-k-pos.]
- Given $A[1 . . n]$ and κ, encode A to answer the query: select (k, l, r) : return the position of the k-th largest value in $A[I . . r]$, for any $k \leq \kappa$.
- Related work by many authors including [Brodal and Jorgensen, ISAAC'09] [Jørgensen and Larsen, SODA'11], [Chan and Wilkinson, SODA'13].

Our results

1. One-sided/prefix variant (top-k-pos(r) queries):

- encoding size $\Omega(n \log k)$ bits.
- $n \log k+o(n \log k)$ bits, $O(k)$ time or $O(k \log k)$ time sorted.

2. General two-sided range top- k queries:

- $O(k n)$ bits, $O\left(k^{2}\right)$ time.
- $O(n \log k)$ bits, $O(k)$ time.

3. Range selection queries:

- $O(n \log k)$ bits and $O(\log k / \log \log n)$ time.
- Matches time bound of [CW SODA'13] but uses less space. Time cannot be improved using $n(\log n)^{O(1)}$ space [JL SODA'11].
- Lower bound for range selection [JL SODA'11]:
- If you use B bits of space you need $\Omega(\log k / \log (B / n))$ time.
- $O(n \log k)$ bits $\Rightarrow \Omega(\log k / \log \log k)$ time: we beat this.
- Their lower bound is only for finding the k-th largest value.

Lower bound on encoding size

Lemma

Any encoding for one-sided top- k queries must take $\Omega(n \log k)$ bits.
Proof: The index can encode $(n / k)-1$ independent permutations over k elements $\Rightarrow \Omega((n / k) \cdot k \log k)$ bits $=\Omega(n \log k)$ bits.

Proof by example $(k=3)$.

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline 3 & 1 & 2 & 4 & 6 & 5 & 8 & 9 & 7 & \cdots \\
\hline
\end{array}
$$

Encode A. Now:

$$
\begin{aligned}
& \operatorname{top}-\mathrm{k}-\operatorname{pos}(1,4)=\{1,3,4\} \Rightarrow A[2]=1 . \\
& \operatorname{top}-\mathrm{k}-\operatorname{pos}(1,5)=\{1,4,5\} \Rightarrow A[3]=2 . \\
& \operatorname{top}-\mathrm{k}-\operatorname{pos}(1,6)=\{4,5,6\} \Rightarrow A[1]=3 .
\end{aligned}
$$

Encoding one-sided top- k queries

Use k colours +1 "null" (= black) colour.

- First k elements assigned colours arbitrarily.
- Each new element gets colour of "ejected" element ("null" if none).

$$
\begin{aligned}
A & =\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 4 & 2 & 10 & 3 & 7 & 5 & 8 & 9 & 1 \\
\hline
\end{array} \\
& \Rightarrow \begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline \bullet & \bullet \\
\hline
\end{array}
\end{aligned}
$$

Encoding one-sided top- k queries

To answer top-k-pos(j) queries, find the first occurrence before j of each colour. For example top-k-pos $(7)=\{6,4,1\}$.

Data structure for finding colours uses succinct $\mathrm{DS}^{\text {TM }}$ technology, space used is $n \log k+o(n \log k)$ bits, time is $O(k)$.
Reports in unsorted order, but can compare colours, so can sort in $O(k \log k)$ time.

Open

$n \log k+o()$ space usage, $O(k)$ sorted reporting for 1 -sided queries?

Encoding two-sided queries

Now we want the general problem: top-k-pos (i, j).

- Basic approach: construct the Cartesian tree of top- k elements in $A[i], \ldots, A[j]$ in $O(k)$ time.
- Requires A to be available!
- It is enough if for each i, we store pointers to to k preceding and succeeding larger elements.

Specifically:

- Define arrays of pointers $P_{0}[1 . . n]$ to $P_{k}[1 . . n]$ as follows.
- $P_{0}[j]=j$ for all $j=1, \ldots, n$.
- $P_{k+1}[j]=\max \left(\left\{i, i<P_{k}[j] \wedge a_{i}>a_{j}\right\} \cup\{0\}\right)$.

Naive representation of these arrays takes $O(k n \log n)$ bits.

Encoding pointers

$A:$	10	8	3	1	6	2	9	5	4	7
$P_{0}:$	1	2	3	4	5	6	7	8	9	10
$P_{1}:$	0	1	2	3	2	5	1	7	8	7
$P_{2}:$	0	0	1	2	1	3	0	5	7	2

$\operatorname{arcs} 1=\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 10\end{array}$

- Level i pointers are non-crossing.
- Can be encoded using $4 n+o(n)$ bits $\rightarrow O(k n)$ bits overall.
- Can obtain $P_{i+1}[j]$ from $P_{i}[j]$ in $O(1)$ time.
- Find top- k in $O\left(k^{2}\right)$ time overall.

Optimal two-sided queries

- View A geometrically in 2D: $A[i]=y \Rightarrow(i, y)$.
- Use idea of shallow cutting for top-k [JL SODA'11].
- Take set of n given points and decompose into $O(n / k)$ slabs each containing $O(k)$ points such that:
- For any 2-sided query top-k-pos $(I, r) \exists$ slab such that it and two other adjacent slabs contain the top- k elements in $A[I . . r]$.
- Gives a kind of encoding: store relative order among these $O(k)$ elements: $O(k \log k)$ bits $/$ slab $=O(n \log k)$ bits, optimal!
- But we need to represent the shallow cutting!

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x=+\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has $2 k-1$ points, split and create boundaries as follows:
- median x-coordinate as vertical boundary.
- bottom y-coordinate as bottom boundary.

- Example: $k=3$.

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x=+\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has $2 k-1$ points, split and create boundaries as follows:
- median x-coordinate as vertical boundary.
- bottom y-coordinate as bottom boundary.
- Example: $k=3$.

Shallow cutting (pre-processing)

- Sweep a horizontal line down from $x=+\infty$.
- Initially just one slab. Place points as encountered into their slab.
- When slab has $2 k-1$ points, split and create boundaries as follows:
- median x-coordinate as vertical boundary.
- bottom y-coordinate as bottom boundary.

- Example: $k=3$.
- At end: $O(n / k)$ slabs each with $\Theta(k)$ elements.
- Slabs naturally form full binary "tree of slabs" T_{s}.
- Naive encoding of x-coordinates requires $O(k \log n)$ bits/slab, or $O(n \log n)$ bits overall.

Encoding the slabs

- Retrieve resolving slab: LCA.
- Retrieve x-coordinates of slab boundaries: top-2 pointers, $O(n)$ bits. slab bottom: ?
- Retrieve x-coordinates of points + answer queries: perform RMQs using CT of A, guided by $O(k \log k)$ bits of ordering info.

Theorem

There is an encoding of size $O(n \log k)$ bits that supports top-k-pos queries in $O(k)$ time.

Encoding range selection

Problem

Given $A[1 . . n]$ and κ, encode A to answer select (k, I, r) which returns the position of the k-th largest value in $A[I . . r]$, for any $k \leq \kappa$.

Overall approach is similar:

- Create κ-shallow cutting.
- For $O(\kappa)$ points in each slab, store range selection data structure: $O(\kappa \log \kappa)$ bits.
- Find resolving slab for given query and use slab's range selection data structure to answer query.
- Convert answer back to "global" coordinates.

Encoding shallow cutting

Previous shallow cutting representation was space optimal but could only enumerate all $O(\kappa) x$-coordinates in a slab in $O(\kappa)$ time. We want $O(\log k / \log \log n)$ query time.
\triangleright We need a more sophisticated representation of slabs which can:

- in $O(1)$ time, retrieve the i-th largest x-coordinate in the slab (access query).
- in $O(\log k / \log \log n)$ time, perform predecessor search for I and r among x coordinates in a slab.

Previous result by [CW SODA'13]

- $O(n \log \kappa+\underbrace{n \log \log n+(n \log n) / \kappa}_{\text {non-optimal terms }})$ bits of space.

Tree Partitioning and Marking

We partition the tree of slabs T_{s}. T_{s} has $n^{\prime}=O(n / \kappa)$ nodes.

- Let $s(v)$ be the number of descendants of v in T_{s}.
- Let $t_{0}=n^{\prime}$ and $t_{i+1}=\left\lceil\log _{2} t_{i}\right\rceil$, stopping when $t_{z}=1$.
- A node v is level i if $t_{i}^{2} \leq s(v)<t_{i-1}^{2}$.
- Node levels decrease from leaf to root.
$\triangleright x$-coordinates in a level i node take $O\left(\log t_{i-1}^{2}\right)=O\left(t_{i}\right)$ bits.
Mark an internal node in T_{s} if:

1. it is level i and both its children are level $>i$.
2. it is level i and both its children are level i.
3. it is level i and its parent is level $<i$.

Lemma

The number of marked level i nodes is $O\left(n^{\prime} / t_{i}^{2}\right)=O\left(n /\left(\kappa t_{i}^{2}\right)\right)$.
For each marked node we store all its x-coordinates explicitly. Sum over all level i nodes is $O\left(\left(n /\left(\kappa t_{i}^{2}\right)\right) \cdot \kappa t_{i}\right)=O\left(n / t_{i}\right)$ bits $\Rightarrow O(n)$ bits overall.

Tree Partitioning and Marking

Marking Rule

v is marked if:

1. it is level i and both children are level $>i$.
2. it is level i and both children are level i.
3. it is level i and parent is level $<i$.

- Each unmarked level i node has:
- one marked child at level <i.
- one child at level i.
- Unmarked level i nodes form paths fringed by marked nodes.

access queries

\triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.

access queries

\triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.

access queries

\triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v 's original points lie cost $O(n)$ bits summed over all unmarked nodes.

access queries

\triangleright Need to store the x-coordinates of points in an unmarked node v.

- Points in v are original or inherited.
- Each original point in v is stored explicitly in a marked node fringing the unmarked path.
- Pointers to the marked nodes where v 's original points lie cost $O(n)$ bits summed over all unmarked nodes.
- For inherited points p, use $O(\kappa)$ colors (cf. 1-sided top- k) to find the ancestor where p is original: $O(n \log \kappa)$ bits.

access queries

Modulo many details (succinct DS ${ }^{\text {TM }}$ technology):

Lemma

We can encode the cells of the shallow cutting to support access queries in $O(1)$ time.

Implies:

- Encoding for range selection using $O(n \log \kappa)$ bits in $O(\log k)$ time.
- Can return top- k, for any $k \leq \kappa$ in $O(k)$ time.

No details given:

Theorem

There is an encoding for range selection that takes $O(n \log \kappa)$ bits and supports range selection in $O(\log k / \log \log n)$ bits.

Conclusions and Open Problems

Conclusions:

- Gave optimal, non-trivial, encodings for range selection and range top- k.
- Improved prevous bounds, "broke" lower bound.

Open problems:

- Sorted reporting in one-sided case.
- Exact constant factors (progress for $k=2$).
- Can we extend this to partially ordered A ? (N. Yasuda)
- What about average-case encoding complexity? (S.-I. Minato)
- Obvious pre-processing times are $O(n \log k)$ for the one-sided case and $O(n \log n)$ for the 2 -sided case. Can this be improved? (N. Yasuda)

