
COMPRESSED TRIES AND

TOP-K STRING COMPLETION

Giuseppe Ottaviano

ISTI-CNR – Pisa

Joint work with Roberto Grossi and Paul Hsu

String set representation

three

trial

triangle

trie

triple

triply

Represent a string set so that

•Lookup and access operations are fast

•Space of the representation is small

t

three

trial

triangle

trie

triple

triply

iree

εε l

εε εgle

h r

e
p

a

ln

Node label
Branching character

Compacted tries

ye

Succinct tree encoding

Succinct trie encoding?

• Good candidate for succinct tree encoding

– Most space is taken by tree pointers

• But… tries can be tall, usually small fanout

• Navigation of succinct trees is “slow”

– A few cache misses for each FirstChild

– Even if no cache misses, constants hidden in O(1)
are high

• Existing libraries using LOUDS tree encoding
are indeed slow

Path decomposition

t

iree

εε l

εε εgle

h r

e
p

a

lnye

h e p l

Query: triple

Recurse here with

suffix le

Centroid path decomposition

• Starting from the root, recursively choose the

node with most descendants

• Height of path decomposition tree O(log n)

with this strategy

Succinct encoding

h e p l

L : t1ri2a1ngle
BP: (((()
B : h epl

(spaces added for clarity)

• Node label written literally, interleaved with number of
other branching characters at that point in array L

• Corresponding branching characters in array B

• Tree encoded with DFUDS in bitvector BP

– Variant of Range Min-Max tree [ALENEX 10] to support
Find{Close,Open}, more space-efficient (Range Min tree)

three

trial

triangle

triangular

trie

triple

triply

Compression of L

...$...index.html$....html$....html$...index.html$

...$...35$...5$...5$...35$

…

3 index

…

5 .html

…

Dictionary

• Dictionary codewords shared among labels

• Codewords do not cross label boundaries ($)

• Use vbyte to compress the codeword ids

Experimental results (time)

• Experiments show gains in time comparable

to the gains in height

• Confirm that bottleneck is traversal

operations

Web Queries URLs Synthetic

Hu-Tucker Front Coding 3.8 7.0 22.0

Lexicographic trie 3.5 5.5 119.8

Centroid trie 2.4 3.4 5.1

(microseconds, lower is better)

Code available at https://github.com/ot/path_decomposed_tries

Experimental results (space)

• For strings with many common prefixes, even
non-compressed trie is space-efficient

• Labels compression considerably increases
space-efficiency

• Decompression time overhead: ~10%

Web Queries URLs Synthetic

Hu-Tucker Front Coding 40.9% 24.4% 19.1%

Centroid trie 55.6% 22.4% 17.9%

Centroid trie + compression 31.5% 13.6% 0.4%

(compression ratio, lower is better)

Code available at https://github.com/ot/path_decomposed_tries

Top-k string completion

• Top-k Completion query
– Given prefix p, return k strings prefixed by p with

highest scores

• Example: p=“tr”, k=2
– (triangle, 9), (trie, 5)

three 2

trial 1

triangle 9

trie 5

triple 4

triply 3

Motivation: query suggestion

t

iree

εε l

εε εgle

h r

e
p

a

ln

(Scored) compacted tries

ye

three 2

trial 1

triangle 9

trie 5

triple 4

triply 3

2

14 3

5

9

Max-score path decomposition

t

iree

εε l

εε εgle

h r

e
p

a

lnye

2

14 3

5

9

h,2 e,5 p,4 l,1

9

L : t1ri2a1ngle
BP: (((()
B : h epl
R : 2 541

three 2

trial 1

triangle 9

trie 5

triple 4

triply 3

Complete tr

Score compression

... 3 5 1 2 3 0 0 1 2 4 1900 1 1 2 3 2 1 10000 ...

3 bits/value 11 bits/value 16 bits/value

• Packed-blocks array

– “Folklore” data structure, similar to many existing
packed arrays

• Divide the array into fixed-size blocks

• Encode the values of each block with the same
number of bits

• Store separately the block offsets

Score compression

... 3 5 1 2 3 0 0 1 2 4 1900 1 1 2 3 2 1 10000 ...

3 bits/value 11 bits/value 16 bits/value

• Can be unlucky

– Each block may contain a large value

• But scores are power-law distributed

• Also, tree-wise monotone sorting

• On average, 4 bits per score

Results

• Bing query histogram: 400M queries

• Raw data (TSV, decimal scores): 94G

• Gzipped data: 23G

• Score-decomposed trie: 24G

Results

Dataset Raw gzip SDT

AOL Queries 209.8 56.3 62.4

Bing Queries 235.6 57.9 61.2

URLs 228.7 54.7 58.6

Unigrams 114.3 44.2 39.8

bits per string-score pair

Performance

• About 10 microseconds for top-10
completions

– Basically the same as retrieving 10 strings from an
std::set (red-black tree)

• Why care? Network latency is in the
milliseconds

• Important if we need to search several
prefixes for each query

– Example: approximate completion

Thanks for your attention!

Questions?

