Adaptive Data Structures for Permutations and Binary Relations

Francisco Claude and J. Ian Munro
NII Shonan Seminar \#29, 28 September 2013

Related Work

- Range Searching - joint work with Diego Arroyuelo, Reza Dorrigiv, Stephane Durocher, Meng He, Alejandro López-Ortiz, J. lan Munro, Patrick Nicholson, Alejandro Salinger, and Matthew Skala.

Adaptive Range Searching

Adaptive Range Searching

Adaptive Range Searching

Adaptive Idea

$O(\lg n)$ search time

Adaptive Idea

- - -

$O(\lg n)$ search time

Idea

- Split the points into k descending chains
- Search inside each chain
- $O(k \lg n)$ time

We can improve

$O\left(\lg k \lg n+k^{\prime} \lg n\right)$

And...

at most $c \sqrt{n}$ chains

How to build this?

- Separating chains is NP-Hard
- We can approximate
- Generate the sets (ascending and descending) and work separately on each one of them

Descending chains

- Supowit's algorithm can generate the minimum number of chains in one direction
- Takes $O(n \lg n)$ time
- Idea: add each point to the lowest compatible chain

Supowit's algorithm

Crossing lines

Untangling idea

Example

Time

Now to our topic...

Now to our topic...

Representing One Chain

- Consider a chain $\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots,\left(x_{m}, y_{m}\right)\right]$
- We can represent it with 2 bitmaps, each with m ones and length n

$$
\begin{aligned}
I & =\left[x_{1}, x_{2}, \ldots, x_{m}\right] \\
J & =\left[y_{1}, y_{2}, \ldots, y_{m}\right]
\end{aligned}
$$

Operations Supported

- Get any index of the pairs
- Obtain points in a given orthogonal range

Getting pairs

$$
\begin{aligned}
I= & {\left[x_{1}, x_{2}, \ldots, x_{m}\right] } \\
J= & {\left[y_{1}, y_{2}, \ldots, y_{m}\right] } \\
& \operatorname{getj}_{\mathcal{C}}(i)= \begin{cases}\perp & \text { if } I[i]=0 \\
\operatorname{select}_{B_{J}}\left(\operatorname{rank}_{B_{I}}(i)\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

$0010010000 \mid 100000100101 \quad[3,6, I|,|2,18,2|, 23]$
0IO00IOOOIOIOOOIOIOOOIO [2,6,I0,I2,I6,I8,22]

Range

$(3,3)$

Use a function similar to getj

00100100001100000100101
[3,6, II, I2, I8,2I,23]
01000100010100010100010
[2,6, $10,|2| 6,18,22$,

Results for all chains

$$
\begin{equation*}
2 n \lg k+O\left(k \lg n+\frac{k n}{\lg ^{c} n}\right) \tag{E}
\end{equation*}
$$

Patrascu
$2 n \lg k+O(k \lg n+n)$
$O(c)$
$O\left(\lg \frac{n}{m}+\frac{\lg ^{4} m}{\lg n}\right)$
Okanohara \& Sadakane

π and π^{-1}

- We need to double the space to know which chain contains the query coordinate

$$
\begin{gathered}
4 n \lg k+O(k \lg n+n) \\
\leq 2 n \lg n+O(k \lg n+n)
\end{gathered}
$$

Observation

- For each position, one and only one chain has a one
- We can represent this with a sequence over an alphabet k
- This converges to something we knew ...

Observation

- For each position, one and only one chain has a one
- We can represent this with a sequence over an alphabet k
- This converges to something we knew ... Barbay \& Navarro, STACS 2009

Did we gain anything?

Did we gain anything?

YES!

Did we gain anything?

YES!

Range searching can be performed in

$$
O\left(\lg ^{1+\epsilon} k+k^{\prime} \lg \lg k\right)
$$

Binary Relations

$\mathrm{n} \times \mathrm{n}$
t elements

Binary Relations

$\mathrm{n} \times \mathrm{n}$
t elements

Option I

```
Data: }\mathcal{R
Result: \Pi, 㳖, 的
\overline { \mathcal { R } } \leftarrow \text { empty binary relation of size } t \times n _ { 2 }
row}\leftarrow
B
for }i\leftarrow1\mathrm{ to }\sigma\mathrm{ do
    B
    for }j\mathrm{ such that (i,j) &R R do
        add (row,j) to }\overline{\mathcal{R}
        row}\leftarrowrow+
col}\leftarrow
B2}\leftarrow\mp@subsup{0}{}{t
for }j\leftarrow1\mathrm{ to }n\mathrm{ do
    B _ { 2 } [ \mathrm { col } ] \leftarrow 1
    for i such that (i,j)\in\overline{\mathcal{R}}\mathrm{ do}
        \Pi[i]=col
        col }\leftarrow\textrm{col}+
return (\Pi, 斻, 放)
```


Option I

-										
	-									
			-							
									-	
	-									
				-						
		-								
								-		
						-				
										\bigcirc
										-

Option 2

- Use chains directly
- We can do a bit better than before
- Dealing with bitmaps with multiple ones in a given position - trick: set bit $\mathrm{A}[\mathrm{k}]+\mathrm{k}$

Results

space: $\quad 2 t \lg \frac{n k}{t}+2 t \lg k+O\left(\frac{k n}{\lg ^{c} n}+k \lg t\right)$
access: $O(r)$
range: $\quad O\left(r\left(\lg k+k^{\prime}\right)\right)$
where $\quad r=\max (c \lg k, c \lg \lg n)$

Applications

- Inverted lists
- We can add RMQs
- Text indexes

The End

