Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling (SIGMOD'13 Research Track Full Paper)

<u>Takuya Akiba (U Tokyo)</u> Yoichi Iwata (U Tokyo) Yuichi Yoshida (NII & PFI)

(Implementation available: git.io/pll)

Problem Definition

Given a graph
$$G = (V, E)$$

- 1. construct an index to
- 2. answer distance $d_G(s, t)$

Goal: Good trade-off

- Empirical method for real-world networks
 - No non-trivial theoretical bounds, but works well

Summary of Results: Network with 100M edges \rightarrow 10GB index, 10 µs query

- Compact data structure?
 - \rightarrow Much more compact than *distance matrices*
- Data structure?
 - \odot index = just 2n arrays (room for improvement?)

Number of vertices

Real-world Networks

Complex Networks

- Social Networks
- Web Graphs
- Computer Networks
- Biological Networks

Real-world Networks

Complex Networks

→ Different methods

Real-world Networks

Complex Networks

Today's topic: methods for complex networks

Previous Methods

Previous Methods: Problems

Proposed Method: Pruned Landmark Labeling

Preliminaries

- Undirected
- Unweighted

(we can easily obtain directed and/or weighted version)

2-Hop Labeling: Index Data Structure

- Commonly used framework (= Data Structure + Query Algo.)
 - [Cohen+'02], [Cheng+'09], [Jin+'12], [Abraham+'12] and OUTS
- Index: label $L(v) = \{(l_1, \delta_1), (l_2, \delta_2), ...\}$ - $l_i \in V, \ \delta_i = d_G(v, l_i)$

Example

						\frown	
<i>L</i> (1):	Vertex	1	4	5	7	10	
	Distance	0	3	2	4	5	$\sqrt{d(110)} = 5$
<i>L</i> (2):	Vertex	2	4	6	12		$u_G(1,10) = 5$
	Distance	0	1	5	3		
<i>L</i> (3):	Vertex	2	3	4	6	7	
	Distance	5	0	4	7	2	

2-Hop Labeling: Query Algorithm

• Query: $d_G(s,t) = \min_{l \in L(s) \cap L(t)} d_G(s,l) + d_G(l,t)$

Paths through common vertices

Example

Distance between vertex 1 and 3 :

•
$$1 - ... - 4 - ... - 3$$
 : $3 + 4 = 7$
• $1 - ... - 7 - ... - 3$: $4 + 2 = 6$ Answer min{6, 7} = 6

2-Hop Labeling: Challenge

Challenge: computing labels

- Correctness (Exactness)
- Sizes of labels (Index Size & Query Time)
- Efficiency (Scalability)

Previous approach [Cohen+'02], [Cheng+'09], [Jin+'12], [Abraham+'12]

• Reduce to optimization problems

Our approach

• Directly assign label entries by graph searches

Pruned Landmark Labeling

Naïve Landmark Labeling (w/o pruning)

- **1**. $L_0 \leftarrow$ an empty index
- 2. For each vertex v_1, v_2, \dots, v_n
 - Conduct a BFS from v_i
 - Label all the visited vertices

•
$$L_i(u) = L_{i-1}(u) \cup (v_i, d_G(u, v_i))$$

Naïve Landmark Labeling (w/o pruning)

After a BFS from 1

After a BFS from 2

Naïve Landmark Labeling (w/o pruning)

- 1. $L_0 \leftarrow$ an empty index
- 2. For each vertex v_1, v_2, \dots, v_n
 - Conduct a BFS from v_i
 - Label all the visited vertices
 - $L_i(u) = L_{i-1}(u) \cup (v_i, d_G(u, v_i))$
- $\Theta(nm)$ preprocessing time
- $\Theta(n^2)$ space
- Inpractical!

Pruned Landmark Labeling

- 1. $L'_0 \leftarrow$ an empty index
- 2. For each vertex v_1, v_2, \dots, v_n
 - Conduct a pruned BFS from v_i
 - Label all the visited vertices
 - $L'_i(u) = L'_{i-1}(u) \cup (v_i, d_G(u, v_i))$

Pruned BFS

- We do not label *u* this time
- We do not traverse edges from *u*

Example

Example

The search space gets smaller and smaller

Theorems: Correctness

Theorems: Correctness

Theorem 4.1

$$QUERY(s, t, L'_i) = QUERY(s, t, L_i)$$

for **any** *s*, *t* and *i*.

Corollary 4.1 (Correctness)

$$QUERY(s,t,L'_n) = d_G(s,t)$$

for any *s*, *t*

i.e., our method is exact.

Theorems: Minimality

Theorem 4.2 (Minimality)

 L'_n (the constructed index) is minimal.

i.e., we cannot remove any label entry from the index.

Choosing the order of vertices to conduct BFSs from.

- To prune later BFSs as much as possible,
- *Central* vertices should come first

We conduct BFSs from vertices with higher degree

Pruning on Real-world Networks

Number of vertices labeled in each pruned BFS.

Pruning on Real-world Networks

Number of vertices labeled in each pruned BFS.

Theorems: Relations between other methods

Landmark-based approx. methods

[Potamias+'09][Gubichev+'10][Sarma+'10][Qiao+'12][Tretyakov+'12]

Attain high average precision by exploiting hubs

Tree-decomposition-based methods

[Wei'10], [Akiba+'12]

Attain good performance by exploiting tree-like fringes

Theorem 4.3

If landmark-based methods attain good precision on a graph

ightarrow then PLL will have small label sizes

PLL can also exploit hubs (highly central vertices)

Theorem 4.4

PLL perform well on graphs with small tree-width

PLL can also exploit tree-like fringes

Combination of Advantages

Combination of Advantages

Bit-parallel Labeling (or *broadword* labeling)

SIGMOD Research 10, Akiba+: Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

Further improve the performance of pruned labeling

- In the beginning, pruning does not work much.
- Therefore, we ignore pruning in the beginning.
 - To skip the overhead of vain pruning testes
- We apply another labeling scheme here

1. Bit-parallel Labeling

- t times (typically <100)
- 2. Pruned Labeling
 - For the rest

(works only on unweighted graphs)

Naïve Landmark Labeling

- **1.** $L_0 \leftarrow$ an empty index
- **2.** For each vertex v_1, v_2, \ldots, v_n
 - Conduct a BFS from v_i
 - Label all the visited vertices
 - $L_i(u) = L_{i-1}(u) \cup (v_i, d_G(u, v_i))$

Key Insight: Distances of neighbors

Bit-parallel Labeling: 65 BFSs at once

- Distance δ_u (BFS)
 - 64bit bitset × 2 (Dynamic Programming)
 - Neighbors with distance $\delta_u 1$
 - Neighbors with distance δ_u
 - (Neighbors with distance $\delta_u + 1$)

Experiments

Largest networks used in experiments (indexing time: <1day)

Summary of Experimental Results

• Scalability: much better

• Query time and index size: comparable

The paper contains detailed comparison and analysis

Conclusion

- Distance querying
- Proposed method: Pruned Landmark Labeling
 - 2-hop cover
 - pruned BFSs + bit-parallel BFSs

Experiments

- Scalable
- Fast
- (easy to implement)

Software available: http://git.io/pll