
Dynamic Updates and Self-Adaptation
Can we fill the gap?

Valerio Panzica La Manna – Politecnico di Milano, Italy

panzica@elet.polimi.it

EASSy 2013 – Shonan Meeting – 12 Sep 2013

Dynamic Updates...

3

Introduction

• Modern software systems are subject to continuous and
unanticipated changes:
– In the surrounding environment.
– In the requirements.

4

Introduction

• Modern software systems are subject to continuous and
unanticipated changes:
– In the surrounding environment.
– In the requirements.

• To incorporate these changes, systems are typically
updated offline:
– Shutdown
– Update
– Restart

5

Introduction

• Modern software systems are subject to continuous and
unanticipated changes:
– In the surrounding environment.
– In the requirements.

• To incorporate these changes, systems are typically
updated offline:
– Shutdown
– Update
– Restart

• Many of these systems must operate continuously

6

Introduction

• Modern software systems are subject to continuous and
unanticipated changes:
– In the surrounding environment.
– In the requirements.

• To incorporate these changes, systems are typically
updated offline:
– Shutdown
– Update
– Restart

• Many of these systems must operate continuously

7

Introduction

• Modern software systems are subject to continuous and
unanticipated changes:
– In the surrounding environment.
– In the requirements.

• To incorporate these changes, systems are typically
updated offline:
– Shutdown
– Update
– Restart

• Many of these systems must operate continuously

8

Dynamic Software Update

Engineering software systems able to evolve at run-time

• Dynamic updates must be safe
– The update process must not lead to erroneous behavior
– Crucial for safety-critical applications.

• Systems must be updated as soon as possible
– To adapt to unpredicted changes in the environment
– To incorporate new critical requirements

9

Open Reactive Systems

 uncontrollable
environment

operate

controlled by

Finite State Controller

Specification S

10

Open Reactive Systems

 uncontrollable
environment

operate

controlled by

Finite State Controller

implements

Environment
Assumptions

Requirements

Specification S

Specification

Sequences of events that
can occur in the environment

Sequences of events allowed
in the system

11

A specification oriented
perspective

Requirements
Environment
Assumptions

Specification

Requirements
Environment
Assumptions

NEW Specification

12

A specification oriented
perspective

Requirements
Environment
Assumptions

Specification

Requirements
Environment
Assumptions

NEW Specification

Problem

In which state can a system safely
disregard the current obligations and
start behaving according to the new
specification?

13

Our contribution

• Formalizing criteria for safe dynamic updates.
– Definition of updatable states [1].
– Additional criteria for more timely updates [2].

• Approach to automatically construct dynamically updating
systems from changes in MSD specification [1, 2].

• Tool realization as part of ScenarioTools [2].

[1] C.Ghezzi et al. “Synthesizing dynamically updating controllers from changes in
scenario based specification”, SEAMS 2012.

[2] V. Panzica La Manna et al. “Formalizing correctness criteria of dynamic
updates derived from specification changes”, SEAMS 2013.

14

Example: Current Specification

● Environment Assumptions: The points on the track section occur in
the shown order.

● Requirements: After endOfTS and before lastBrake, the RC requests
the crossing control permission to enter the crossing (...)

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

15

Example: Specification Change

● Changed Assumptions: The event approachingCrossing occurs in the
sequence of environment events as shown

● New Added Requirement: After approachingCrossing and before
lastEmergencyBrake, the RC must check the status of the crossing.

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

16

Example: Offline Update

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

17

Example: Offline Update

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update not possible

18

Example: Offline Update

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible
update not possible

19

Example: Offline Update

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible
update not possible

How to dynamically update the RailCab to the new behavior at run-time?How to dynamically update the RailCab to the new behavior at run-time?

20

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

21

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible

initial state: it can always be updated
(same behavior of off-line updates).

22

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible

the running system does not remember this event
since it is not present in the old assumptions

not sure

23

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible not sure update possible

here we can be sure that approachingCrossing
has occurred (due to the new assumption)

24

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible not sure update possible too late

25

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible not sure update possible too late

When is a system updatable?When is a system updatable?

26

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible not sure update possible too late

Intuition 1: The system must continue its past execution to satisfy S'.Intuition 1: The system must continue its past execution to satisfy S'.

27

Fundamental criterion

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

checkCrossingStatus

crossingStatus

interval for the new
required interaction

approaching
Crossing

update possible not sure update possible too late

Intuition 2: The considered past execution starts from the last time
the initial state is visited.

Intuition 2: The considered past execution starts from the last time
the initial state is visited.

28

Synthesizing Dynamically
Updating Controller

change in requirements or
environment assumptions

Specification S Specification S'

(assumption or requirement
MSDs added or removed)

current controller

dynamically updating controller

is implemented by

copy of the
current controller

controller for
implementing S'

updatable states update transitions

automated
synthesis

29

c'0,0,0

1,1,0

eTS

1,2,0

rE

2,1,1

aC

1,3,0

eA

2,3,1

aC

2,3,2

cCS

2,3,3

cS

3,0,3

lB

4,0,0

lEB

2,2,1

rE
2,1,2

cCS

eA

2,2,2

cCS
2,1,3

cS
rE

2,2,3

cS rEeA

eA

3,0,1

lB

3,0,2

3,0,3

cCS

cS

lEB

5,0,0

nR

eN

0,0

1,1

1,2

1,3

2,0

eTS

rE

eA

lB

3,0

4,0

lEB

nR

eN

c

“don't know”

ε

ε

ε

ε

updatable
states

: removed transitions

added update transitions and c'-part

endOfTS

enter
Crossing

lastBrake noReturn

lastEmergency
Brake

requestEnter

enterAllowed(t/f)
interval for the

required interaction

30

Modeling MSD Specifications

31

Controller Synthesis

32

Dynamically Updating
Controller

Dynamic Updates and Self-Adaptation
Can we fill the gap?

34

1) Self-Adaptation &
Safe Updates
• Self-adaptation must be safe:

– Parameter self-tuning is safe:
• No changes in the implementation

– Self-adaptation via composition:
• Needs to rely on stateless components or services

– Self-adaptation of stateful applications:
• Requires quiescence

Can we do better?
• Our criterion of updatable states can help:

– Automatic identification of safe updatable states
– More timely adaptation

• No need to wait for quiescence

35

2) Automatic generation of self-
adaptive systems

Integrating goal models and scenario-based specifications:
• Goal models defines the adaptation

– The alternative goals and tasks
– The context triggering the adaptation

• MSD specification can define the behavior of goals and tasks
• The synthesis approach can automatically generate

– the controller of each adaptive behavior
– and the update transitions between them

36

RailCab Example

Approaching
Crossing

Single Check Double Check

or or

Obstacle
Detected

37

RailCab Example

Approaching
Crossing

Single Check Double Check

or or

Obstacle
Detected

Specification S

Specification S'

38

RailCab Example

Approaching
Crossing

Single Check Double Check

or or

Obstacle
Detected

Specification S

Specification S'

c'0,0,0

1,1,0

eTS

1,2,0

rE

2,1,1

aC

1,3,0

eA

2,3,1

aC

2,3,2

cCS

2,3,3

cS

3,0,3

lB

4,0,0

lEB

2,2,1

rE
2,1,2

cCS

eA

2,2,2

cCS
2,1,3

cS
rE

2,2,3

cS rEeA

eA

3,0,1

lB

3,0,2

3,0,3

cCS

cS

lEB

5,0,0

nR

eN

0,0

1,1

1,2

1,3

2,0

eTS

rE

eA

lB

3,0

4,0

lEB

nR

eN

c

“don't know”

ε

ε

ε

ε

updatable
states

: removed transitions

added update transitions and c'-part

39

RailCab Example

Approaching
Crossing

Single Check Double Check

or or

Obstacle
Detected

Specification S

Specification S'

c'0,0,0

1,1,0

eTS

1,2,0

rE

2,1,1

aC

1,3,0

eA

2,3,1

aC

2,3,2

cCS

2,3,3

cS

3,0,3

lB

4,0,0

lEB

2,2,1

rE
2,1,2

cCS

eA

2,2,2

cCS
2,1,3

cS
rE

2,2,3

cS rEeA

eA

3,0,1

lB

3,0,2

3,0,3

cCS

cS

lEB

5,0,0

nR

eN

0,0

1,1

1,2

1,3

2,0

eTS

rE

eA

lB

3,0

4,0

lEB

nR

eN

c

“don't know”

ε

ε

ε

ε

updatable
states

: removed transitions

added update transitions and c'-part

Under which condition the update transitions are reversible?Under which condition the update transitions are reversible?

40

3)Dynamic Updates
of Self-Adaptive Systems

Applying the approach to the MAPE-K
• Adding new goals and associated behavior

– No need to manually define the K
• It can be derived from the specification

– No need to manually identify updatable states
– Automatic synthesis of unanticipated adaptive behavior

41

3)Dynamic Updates
of Self-Adaptive Systems

Applying the approach to the MAPE-K
• Adding new goals and associated behavior

– No need to manually define the K
• It can be derived from the specification

– No need to manually identify updatable states
– Automatic synthesis of unanticipated adaptive behavior

• Dynamic Updates of Monitoring capability?

ありがとう

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 40
	Slide 41
	Slide 42

