
ISSN 2186-7437

NII Shonan Meeting Report

No. 191

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Human Aspects of Software Engineering

Thomas Fritz (University of Zurich, Switzerland)
Yasutaka Kamei (Kyushu University, Japan)
Thomas Zimmermann (Microsoft, USA)

March 6–9, 2023



Human Aspects of Software Engineering

Organizers:
Thomas Fritz (University of Zurich, Switzerland)
Yasutaka Kamei (Kyushu University, Japan)
Thomas Zimmermann (Microsoft, USA)

March 6–9, 2023

Report created by André N. Meyer (University of Zurich, Switzerland)

Abstract

Software is built by humans. Software developers are the ones who develop
and evolve code, that elicit requirements, test the software, and talk to their
teammates to coordinate. Yet, traditionally, research has focused to a large
extent on normative processes and artefacts – how developers ought to develop
software, the digital objects developers have created or modified, measuring
their output, and collecting data from software repositories.

While this focus on ideal work processes and developers’ output can provide
interesting and relevant insights, it falls short when the goal is to better under-
stand the humans in the process, such as the cognitive demands and emotions
they experience, and the individual differences between developers while they
create and evolve the output data. Especially since these human aspects can
have a significant effect on the output and its quality, the better we understand
the human in the process, the better we can support the software development
endeavor, and the better software quality we can achieve.

This meeting will bring together leading researchers to discuss current and
future trends and challenges related to human aspects in software engineering,
for example:

• How to best support the human in the process, especially given the in-
creasing cognitive demands and the interleaving of work and life. The
complexity of software is increasing and developers now have to work with
complex engineering pipelines.

• How to evaluate and design AI-powered tools from a human perspective.
AI-powered code completion tools such as Copilot are revolutionizing soft-
ware development. We will discuss how to evaluate such systems from a
human perspective and how to measure their impact on productivity. We
will also discuss what new experiences can be created across the entire
development life cycle to support humans in the software process more
efficiently.

1



• How to improve focus and reduce distractions for software developers.
The productivity of software developers has received significant attention
in industry, for example, at Google, Microsoft, Facebook, and other com-
panies. We plan to discuss how to measure and improve productivity of
software engineers.

• How to increase software developer’s well-being. While it is common sense
that well-being is important for employees, there has been limited research
in the context of software engineering. We plan to discuss research oppor-
tunities around this topic.

• How to support software developers working remotely and the new future
of work. The coronavirus pandemic has significantly disrupted how people
work and many employees now work remotely. We plan to discuss chal-
lenges that emerge and how we can best support developers in a remote
setting. We will also plan to discuss a new future of software development
that supports sustainable distributed remote work.

• How to support developers using biometric information. Biometric sensors
offer a unique opportunity to collect data about software development and
correlate with other data signals to learn more about how developers work
and what cognitive demands they are facing. We plan to discuss research
opportunities around this topic.

• How to navigate ethics and privacy issues. We plan to discuss common
issues around ethics and privacy in empirical research and how to do re-
search responsibility.

• How to educate future researchers in this domain. We will focus on com-
piling materials for master students who want to start research projects
on human aspects in software engineering. In addition, we will focus on
compiling review guidelines and best practices for experienced researchers
to improve the quality of ongoing research.

Meeting format. The meeting will be highly interactive. It will include a
mix of short lightning talks by the attendees, followed by breakout sessions on
common topics of interest. We will have extended presentations from industrial
participants on how human aspects of software engineering are considered in
industry. We will closely involve the participants in the design of the agenda
and the definition of the desired meeting outcomes (e.g., collaborations, books,
publications, special issues, follow-up meetings, etc.)

Academic impact. We expect to have lively discussions about emerging
topics and challenges related to human aspects of software engineering. The
industry participants will provide input on what topics are most important
to focus on. We also expect that attendees will be able to identify potential
collaborators for research projects and make connections to companies that they
could otherwise not connect to. The collaborations will push the boundaries of
empirical research and lead to high-profile publications. In addition, we expect
to come up with guidelines and best practices for research in this domain, which
can also be beneficial for industry.

Industrial impact. Industrial participants can benefit greatly from this
seminar by learning and discussing existing state-of-the-art research as well as
finding suitable potential collaborators.

2



Report Structure

The remainder of this report is structured as follows: First, we present the
meetings schedule and short or extended abstracts of the invited talks of four
researchers. Besides the individual 5-minute introductory presentations, these
served as inspiration for the upcoming discussions during the Shonan meeting.
Next, we provide summaries of the various discussions that we’ve had, either
in break-out groups or the plenary. Finally, a list of participants as well as a
summary, challenges and outcomes is provided.

Meeting Schedule

Check-in Day: March, 5, 2023 (Sun)

• Welcome Reception

Day 1: March, 6, 2023 (Mon)

• Opening

• Introduction

• Invited Talk #1: John Whittle

• Group Photo Shoot

Day 2: March, 7, 2023 (Tue)

• Invited Talk #2: Nicole Novielli

• Invited Talk #3: Andrew Bagel & Alexander Serebrenik

• Group sessions

Day 3: March, 8, 2023 (Wed)

• Group sessions

• Excursion and Main Banquet

Day 4: March, 9, 2023 (Thu)

• Group sessions

• Wrap up

3



Invited Talks

How can we equip software engineers to be proactive AI
ethics proponents?

Jon Whittle, Data61

Software engineering has traditionally focused on how to build software re-
liably, affordably, safely and securely. This ignores a broader set of human
values - such as inclusion, diversity, social responsibility, well-being and tradi-
tion etc. This talk argues that these broader human values should be embedded
in software - since software fundamentally shapes society. The talk reported
on six years of work in integrating human values in software engineering, and
application of this work to responsible AI. The talk also reflected on the role of
software engineering researchers in ensuring that AI systems are developed in a
responsible way.

Towards Supporting Emotion Awareness of Software De-
velopers

Nicole Novielli, University of Bari

Software development is an intellectual activity requiring creativity and
problem-solving skills, which are known to be influenced by emotions. Develop-
ers experience a wide range of affective states during programming tasks, which
may have an impact on their job performance and well-being. Early recogni-
tion of negative emotions, such as stress or frustration can enable just-in-time
intervention for developers and team managers, in order to prevent burnout
and undesired turnover. In this talk, I will present an overview of recent re-
search findings of our empirical studies aimed at investigating the link between
emotion and productivity, understanding the triggers for developers’ emotions,
and the strategies they implement to deal with negative ones and restore pos-
itive feelings. Furthermore, I will present the results of a field study involving
software developers from five different companies investigating the feasibility of
emotion recognition using a minimal set of non-invasive biometric sensors i.e.
a wristband capturing the electrodermal activity and heart-related metrics. To
conclude, I will be discussing open challenges and presenting early results of
ongoing empirical studies.

Supporting Neurodiversity in Software Engineering

Andrew Begel, Carnegie Mellon University

My research aims to create the socio-technical infrastructure underpinning
accessible technology and inclusive workplaces to provide opportunity, elimi-
nate bias, and empower people with disabilities to fully engage and collaborate
equitably with their non-disabled colleagues. My recent work aims to help
neurodivergent individuals, who make up 15-20% of the world population with
autism, ADHD, dyslexia, and others. We explored the challenges that neuro-
divergent developers and IT professionals face when using Microsoft’s Azure

4



Portal and developed a set of neurodiversity-related user experience guidelines
to help designers improve their software and make it easier to use by their neu-
rodivergent customers. This case study illustrates the benefits and challenges
of applying inclusive and universal design towards addressing the specific needs
of neurodivergent users.

Gender and Age in Software Engineering

Alexander Serebrenik, Eindhoven University of Technology

In this talk I provide an overview of the results we have obtained when
studying gender and age in software engineering.

While in our early work we have focused on activity of developers of different
genders on such software engineering platforms as Stack Overflow and GitHub
we have soon realised that focusing on individuals’ behaviour is not enough and
one has to consider teams, i.e., gender diversity within teams. A priori, diversity
can have both benefits and drawbacks. Information-processing theory treats
diversity as positive: bringing to the table a mixture of cultural/educational
backgrounds, and access to different networks and broader information can en-
hance a team’s creativity, adaptability, and problem solving skills; indeed di-
verse problem solving teams tend to outperform high-performing problem solv-
ing teams. This promise of better team performance is, however, threatened by
communication challenges associated with diverse teams. Indeed according to
the similarity-attraction theory of Williams and O’Reilly, people prefer working
with others similar to them in terms of values, beliefs, and attitudes, as this
facilitates communication between the team members. Similarly, social identity
and social categorization theory of Tajfel postulates that people tend to catego-
rize themselves into specific groups, and categorize others as outsiders; members
of one’s own group are then treated better than outsiders.

This is why in the following series of papers we have focused on communi-
cation in software development teams, and in particular, on patterns of subop-
timal communication, so called “community smells” introduced by Tamburri et
al. based on the management literature and observed in both open-source and
closed-source software projects. We have established that community smells
are related to code smells, i.e., suboptimal organisation of communication be-
tween developers corresponds to suboptimal organisation of the source code.
For example, information overload represented by the black cloud co-occurs
with lengthy methods and lone wolves, i.e., unsanctioned or defiant contrib-
utors who carry out their work irrespective or regardless of their peers, their
decisions and communication, with ill-structured spaghetti code. Furthermore,
in a follow up study we observed that gender diverse teams are less likely to
develop black cloud since women are known to take mediating roles. Moreover,
geographically dispersed team members are less likely to experience black cloud
as well. A possible explanation is that managing people physically arranged in
different parts of the world means using specific management tools and protocols
for communication and collaboration, e.g., Trello and Jira which “nudge” the
way of working towards a rather narrow, more disciplined approach reducing
the noise associated with black cloud.

However, understanding the phenomenon is not enough - and this way we
have joined several efforts aiming at increasing gender diversity in computing.

5



The first project consisted in translating and adapting US-based educational
program “Beauty and Joy of Coding” to Dutch. We have opted for this ed-
ucational program since it is known to be ‘programming-heavy’, on the one
hand, and has been shown to attract non-traditional candidates such as women
and non-CS majors to programming, on the other hand. At the moment the
translation is being used and adjusted in one of the schools in the Netherlands.
The second project consisted in organising women-centric hackathons in Brazil.
Survey of the hackathon participants has shown they did not participate in such
activities in the past due to not being confident enough in their technical skills
or not being aware of the hackathons existence. The participants aimed at cre-
ating an interesting project during the hackathon but also had more long-term
goals such as becoming part of the community or advancing their careers. It
remains to be seen whether such hackathons really attract women to computing
or whether their involvement remains limited to the hackathon itself. The two
examples of trying to bring change in the gender composition of the computing
world are of course only the first steps: it is imperative that we as researchers
beyond understanding the experiences and needs of developers from minoritized
group, to providing better support, either through better software engineering
tools or through better software engineering processes.

Another diversity aspect we have been working is age. We have started
by studying the public discourse surrounding age in software development. By
analysing 24 articles published on blog platforms and news sites, we have ob-
served that employability has emerged as the dominant theme. The employ-
ability strategies recommended by the articles included growing as a software
engineer and changing the work environment: moving to a management role,
and mastering modern technologies. The latter strategy is, however, controver-
sial among developers on Hacker News: while some commenters indicate the
importance of keeping up to date with technology development, others stress
that learning new technology cannot counter the “cultural mismatch” but also
that there “are skills past simply becoming proficient in new tools”. Further-
more, developers are being recommended to lower their expectation in terms
of location, salary or job function aptly summarised by one of the articles as
“you’re old, get over it”. The last group of strategies involved appearing young,
which captures controversial strategies such as modifying one’s résumé to dis-
guise age-related aspects as well as undergoing plastic surgery to look younger,
an aspect that has recently been picked up by major US news outlets. This
category further contains adopting patterns of youthful behaviour, including
working overtime or during weekends, which are strategies known to conflict
with other responsibilities such as family.

In the last part of the talk we have combined the two perspectives and
discuss experiences of veteran women in software engineering as well as the
“survival” strategies they have used. Having interviewed 14 study participants,
we have identified the aforementioned strategies and experiences. Both among
the strategies and among the experiences, in addition to the age-based experi-
ences/strategies, gender-based experiences/strategies we have identified experi-
ences/strategies related to age and/or gender. The latter category is telling: as
it is often the case for individuals belonging to the intersection of diversity axes,
they do not necessarily whether their experiences should be attributed to indi-
vidual diversity axis or to the interplay of several such axes, i.e., veteran women
are sometimes unsure whether the negative experiences were because of their

6



gender or their age. There were not many Positive experiences related to age
and gender, although Being a Role Model and More Opportunities Due to Gen-
der and Age were found. One participant described how companies specifically
looking to develop products aimed at her demographic led to opportunities: “A
company approached me and said they were in the business, they wanted to
make an app that would help predict who would have a stroke. . . They were
like ‘our ideal candidate would be a Woman of Color [who has] also survived a
stroke.’ ” Negative experiences were far more common, such as Seen as Non/less
Technical , which has also been widely observed in the literature. We found that
Gender Related Strategies contained the most strategies, with eight separate
categories and 308 code segments. The categories were: Against Gender Bias
Strategies, Career Related Strategies, Changing Work Environment, Changing
Your Appearance, Communication Methods, Ignoring Situations, Traditionally
Feminine, and Traditionally Masculine. Of these, Against Gender Bias Strate-
gies was the largest category, with 70 code segments and eight subcodes, such
as Backing Other Women Up.

Ultimately, the findings of our study have implications both for organisations
employing or seeking to employ veteran women and for the veteran women them-
selves. Organisations should invest in creating a good working environment and
a positive atmosphere, investing older developers of marginalized genders with
sense of control of their work and their careers, supporting their promotion, as-
signing tasks and paying them on par with men. While these recommendations
are true for any employer, they are even more pertinent for software engineering
given the scarcity of older women and non-binary people in this industry. More-
over, specifically in case of software engineering the inclusion of developers who
are more representative of the population ensures that the software can meet the
needs of society as a whole. Developers themselves can move to a different work
environment (e.g., by starting their company, moving to a different company,
becoming consultant or manager) or try to change their work environment (e.g.,
by unionizing, standing up against gender bias or carving new opportunities for
themselves). Changing appearance is one of the commonly mentioned but pro-
foundly problematic strategies. We recognise that these recommendations are
merely band aid solutions applied to systemic issues; however, we hope that in
short-term they might help developers to survive in the industry.

And of course, veteran women are merely one of the intersections we might
consider. Using survey data of U.S. STEM professionals (N = 25,324), Erin Cech
examined whether white able-bodied heterosexual men (WAHM) are uniquely
privileged in STEM. The results show that WAHM experience better treatment
and rewards in STEM compared with members of all 31 other intersectional gen-
der, race, sexual identity, and disability status categories. WAHM have been
found to experience more social inclusion, higher professional respect, career
opportunities, salaries and persistence intentions (compared to STEM profes-
sionals in other intersectional groups). This calls for additional studies taking
the intersectional perspective and trying to understand experiences of software
developers from additional intersectional groups.

7



Topic Summaries of Working Groups on Tuesday

After listening to the introductory presentations and invited talks, the group
split into ad-hoc subgroups to start to define the scope of our ongoing discussions
and collect initial ideas and challenges with respect to the Human Aspects of
Software Engineering and the influence of AI on development processes and
software engineers.

The group on Developers’ Interactions with AI identified the following
challenges and research opportunities:

• The general challenge is to identify appropriate and timely research ques-
tions, given that the technology is evolving so fast.

• Therefore, the group hypothesized that it’s better to focus on long-lift
problems such as impact, and less on the actual technology. They were also
wondering about the balance of benefits and new issues that AI entails.

• In addition, they were wondering about how the workflow is impacted: are
fewer people reviewing code? will the software development roles change
(e.g. non-creative jobs might be reduced)? how will UX developers be
impacted if interfaces are more and more chat-/voice-like? which new
roles will emerge?

The next group discussed how the new future of work might impact Col-
laboration and Well-Being:

• One more general discussion was on improving our understanding of well-
being by means of producing a more holistic list of factors that impact
software engineer’s well-being, creating definitions, and identifying ways
to quantify well-being.

• There are factors that impact collaboration and well-being that cannot be
influenced or directly acted upon, such as personality traits. These are
harder to impact from the outside, whereas individuals can learn to take
action on such things anytime.

• We were further wondering how much the individual’s and company’s cul-
ture influences collaboration and well-being. For example, we’ve learnt
that in Japan people often take decisions in favor of their team, such as
being able to get parental leave, but not taking them to keep support-
ing their team. Such cultural impacts need to be better understood and
awareness increased, especially in multi-cultural teams. We were wonder-
ing if more explicitly describing a company’s values or even describing
them as rules (e.g. “you are explicitly encouraged to take your parental
leave”, “you may say no to meetings”) could be helpful.

• When joining a team or company, there is often also a form of self-selection
since most people prefer to work with other people who have a more similar
way of working and thinking (e.g. a similar shared background), even
though more diverse teams have been shown to perform better and have
more diverse solutions.

8



• Teams and companies need to find a balance between bottom-up and top-
down approaches to reach a certain degree of alignment of values (e.g.
Schwartz model of basic human values).

• Finally, we’ve discussed opportunities of performing more cross-cultural
studies to better support and foster the creation of diverse software devel-
opment teams.

The third group started to discuss general themes and questions of when the
topics of “AI & Software Engineering” and “Collaboration & Well-Being” are
combined:

• Much of existing work has targeted individuals, so there is lots of room
left to target teams, and better understand what a team really is and how
it is defined.

• The team was further wondering how the huge changes that are currently
happening in the space of AI and especially large language models (LLMs)
impacts accountability (i.e., “who is responsible when the machine makes
or decides things?”) and our jobs (i.e., “how do these LLMs impact the
required skill sets and how do we re-train people?”)

• Concretely, for software developers, the team was wondering whether skills
move to analyzing and quality reviewing code that was produced by the
LLMs and no longer by human developers (i.e., editor vs creator)? The
team agreed that these changes will definitely require more critical think-
ing of developers.

• Resulting questions for researchers are:

– Which are the required skill sets of the software engineer of the near
future?

– Are we as researchers mindful of technological advances when design-
ing studies?

– What does software engineering mean in this new world of AI-generated
software?

– Could this reinforce the need for better program comprehension and
visualization?

– How is trust in LLMs generated when these models rely on AI-
generated code, as opposed to e.g. Stack Overflow?

9



Topic Summaries of Working Groups on Wednes-
day and Thursday

Group 1: AI in SE

Members: Jon Whittle, Foutse Khomh, Bin Lin, Christoph Treude, Yasutaka
Kamei, Masanari Kondo, Daniel German, Michele Lanza

The discussion notes and tables were inserted to ChatGPT to summarize,
after which the output was cross-checked:

Generative AI, such as large language models (LLMs), has the potential to
impact various phases of the software development lifecycle, including require-
ments, design, implementation, testing/validation, maintenance, and procure-
ment. In the requirements phase, generative AI can automate several tasks, such
as summarizing requirements elicitation documents, rapid prototyping, and en-
suring consistency in requirements documents. However, eliciting requirements
is fundamentally a human activity that may not be easy to automate.

Similarly, in the design phase, generative AI can automate some tasks, such
as good for simple designs, including design patterns, and visualizing designs.
However, the abstraction, which is fundamental for design, may be hard to
automate, requiring human intervention.

In the implementation phase, generative AI can automate code review and
rapid prototyping, making human developers obsolete. However, generated code
can be hard to understand because of inadequate naming conventions, which
presents a problem that requires human intervention.

In the testing/validation phase, generative AI can automate test-driven de-
velopment, improving the efficiency and effectiveness of software development.

In the maintenance phase, generative AI can automate many tasks, such
as auto-documentation, human-readable explanations, and reverse engineering,
but some maintenance tasks may still require human intervention.

While generative AI can improve the efficiency and quality of software devel-
opment, it also raises concerns around ethics, bias, privacy, and security. The
use of generative AI in software engineering requires careful consideration of
these ethical implications to ensure that the technology is used in a responsible
and ethical manner.

Moreover, the economic implications of implementing and maintaining gen-
erative AI need to be carefully evaluated, as there may be costs associated
with implementing and maintaining the technology. The successful integration
of generative AI into software engineering will depend on a careful balance be-
tween the benefits of the technology and the potential risks and costs. Therefore,
the optimal approach is likely to be a combination of generative AI and human
developers, leveraging the benefits of generative AI while mitigating the poten-
tial risks and costs. Ultimately, the responsible and ethical use of generative
AI in software engineering can lead to more efficient and effective software de-
velopment while minimizing the potential risks and costs associated with the
technology.

10



Group 2: AI in SE

Members: Dong Wang, Daniel Russo, Nicole Novielli, Takashi Kobayashi, Margaret-
Anne Storey

This break-out group started developing a framework for understanding and
measuring the impact of AI diffusion on Human and Social Aspects of Software
Engineering, based on the perspectives of McLuhan’s Tetrad (see Figure 1). The
outcomes, including examples of how to apply the framework, are summarized
in Figure 2 - 7.

Figure 1: McLuhan’s Tetrad.

Figure 2: Research Framework for Understanding and Measuring the Impact of
AI Diffusion on Human and Social Aspects of SE.

11



Figure 3: The Framework in Action.

]

Figure 4: Asking ChatGPT to list and explain relevant Theories.

12



Figure 5: Impact on new contributors’ learning (individual perspective).

Figure 6: Impact on team expertise (team perspective).

13



Figure 7: Main points of discussion and possible next steps.

14



Group 3: Future of Work in SE

Members: Jin Guo, Hideaki Hata, Alexander Serebrenik, Thomas Zimmermann,
Gail C. Murphy, Filippo Lanubile

Discussion Scope

• Well-being, inclusive, Organizational or Software developers,

• The concept of software development

• Skills for software developers for future – Is everyone a developer?

• Data scientists and other roles are part of the team producing large soft-
ware systems.

• Considering systems being built, and the requirement of qualities for the
people who are building it.

• Skill shortage, is it still the case in the future.

• Professional software engineers will work differently in the future – pro-
gram comprehensive, debugging.

• In the future, are we moving away from code? Model-driven software
development is the same idea but never works. We cannot parameterize
enough to get the quality we want. We still have a long way to go to
dedicate design to LLM.

• Open source and sponsorship. Is this model the future? If LLM starts
charging big fees and causes barriers for the open source community. Busi-
ness opportunities for supporting those communities?

• Responsibility, the people right at the front line have the largest respon-
sibility. Remote work also puts more emphasis on responsibility. Trust.

• Machines write code, humans do quality assurance. How to support those
paradigm changes?

• What does community look like? What should they share? Responsibil-
ity? When to take it and when to push away?

Challenges

Categorized with Labels: [IMP] Impact of LMMs on source code; [PROC] Devel-
opment process; [QA] QA; [SKI] Role/Skills; [COM] Community; [ECO] Eco-
nomic; [LEG] Legal

• Who is responsible? For what? [SKI]

• Finding tradeoffs between people and service expenses? (cost-sharing)

• What is good code? For input to models and also output to people.

• How can we ensure inclusive code?

15



• Provenance: Where are things coming from? [SKI]

• What new responsibilities must a developer assume? [SKI]

• How does more responsibility affect well-being? What training do we
need? [SKI]

• What are acceptable users for LLM? How to choose an LLM?

• How to balance the responsibility between individuals and community?

• How to deal with code clones generated by LLM? (Vulnerability tracking,
Clone Management)

• Disruption of abstraction

• AI tends to exuberate existing problems (e.g. keep things less inclusive)?

• Impact of LLMs on technical debt (e.g., many clones, poor architecture)?

• What is the process of maintenance and evolution? (LLM evolve, LLM
remains the same, but you want to change the code, additional curated
code)

• How do we maintain the ecosystem? What does the ecosystem become?
[COM]

• What to find which part has to be changed when the context of the system
changes?

• What is a bug? How do we report bugs?

• What are the blind spots for testing?

• What tools do we need to deal with the uncertainty of LLM generated
code (e.g., interrogation)? [SKI]

• How do we program in dialog (and maintain state)? [PROC]

• Will legacy be no longer a problem, and become easy to innovate? Or will
we create more legacy? [COM] [PROC] [ECO]

• How will LLM change skill development? [SKI]

• How do we prevent adversarial attacks on the LLM? [QA]

• Will the developers be limited in career choices? [SKI]

16



Group 4: Future of Work in SE

Members: Andrew Begel, Kelly Blincoe, Thomas Fritz, Reid Holmes, Andre N.
Meyer, Raula G. Kula

Two Visions for the Future of Work in SE

One vision focuses on the future of effective teams, which is to...

• ... ensure effective teaming in the future, we will need to understand
the effects of team diversity (e.g., gender, culture, ethnicity, disability,
values, etc) on communication, collaboration, coordination, productivity,
motivation, happiness at the individual, team, and organizational levels.

• ... educate the next, more democratized, generation of software engineers
with new tools, new processes, different skills, and values necessary to
build software for the ever-changing needs of society.

• ... foster effective, sustainable, inclusive, and democratized teamwork we
need to better understand how to evolve and support the social skills that
software development teams need to thrive in the new future of work.

The other vision focuses on increasing the focus on essential complexity, by
raising the abstraction levels in software developments and its Team
members:

• To effectively reason and understand the higher levels of generated code,
so that teams can easily express their needs without losing trust of the
generated code.

• Incorporating the non-deterministic nature of generated code.

• Training specialized members to piece and glue code together, connect the
dots, scale software, and optimize software and personalize it.

With the advent of large language models like ChatGPT and Copilot, the
problem that we are being faced with is the need for a better understanding of
how people are involved in software development.

Vision 1: Effective interaction of development teams in hybrid work
requires evolving existing social skills

We need different skills, different tools, different processes, better educational
experiences for hybrid work. We define the following research questions to help
tackle the vision:

Individual Work

• What could be a good work schedule of a software engineer in the future?
(personal preferences, chronotypes, family situation, etc.)

• Why might we not work less even though we could save lots of time with
AI in the future? (economic, social pressure, value driven)

• We had this shift from remote to hybrid work; what could other similar
shifts be in the near future? (e.g. less work hours and work routines)

17



Team

• What are social skills required to be good at hybrid work, and how do
they differ from in-person work?

• In which ways is hybrid work making teamwork more difficult?

• What is the impact of hybrid or remote-only work on team cohesion and
loyalty towards the team and company?

• How should we operationalize metrics for team communication effective-
ness in order to measure them? (based on SPACE framework)

Organizational Issues

• How can we train teaming skills? Which ones are teachable and which
ones are more innate?

• How do you organize your teams at an organizational level to be effective
when working hybrid?

• Are values determined bottom up or are they determined from the top?

• How does the governance structure employed by the team affect the adop-
tion of values?

• Is it possible to change toxic cultures from below or are individual workers
powerless?

Diversity, Equity, Inclusion, Belonging

• How do we recruit, retain and advance more women into SE?

• Does the introduction of generative AI for code creation. support or reduce
inclusion, diversity, biases?

• How can we increase the diversity and inclusion of marginalized groups
(additional cultures, ethnicities) into software and what is their effect on
the team and product? How do we make those values more explicit and
deliberately chosen?

Longitudinal

• How has teaming changed over the past 60 years? How do teams break
down differently now than before?

• What are the well-being factors of an individual, team and organization?
What model describes these factors?

• How do you define a team culture at the beginning when no one really
knows one another, knows one another’s values, skills, or contributions?

• Does the communication culture and needs stay the same over time?

• How do you evolve communication processes and practices and culture
over time?

18



We expect the following outcomes from tackling the aforementioned re-
search questions:

• Create a team norming framework for negotiating, evaluating, evolving
teamwork, values, cultures as the team’s needs change.

• Building on the SPACE framework, collect a set of operationalized
metrics to create a holistic understanding of teamwork effectiveness and
efficiency and show how this has changed over time.

• Create a longitudinal chart of how effective teamwork skills have evolved
over the long history of software development.

• Create a set of pedagogical modules to teach teamwork for the next
generation of developers and the way that they prefer to work.

• Assessment of existing pedagogy for software teamwork to identify
they need to change to support the needs of the future of work.

Vision 2: Increased Focus on Essential Complexity in Software Engi-
neering

Changes in Abstraction Levels. We have seen changes in abstraction levels
throughout the history of software engineering. Assembly languages abstracted
details of the hardware systems. High level programming languages and compil-
ers allowed us to describe/program systems closer to the mental model humans
have and abstract away from the details of the processing unit of the computer.
What we are seeing now is another change in the abstraction level. Large lan-
guage models are now allowing us to express our needs in natural language and
provide boilerplate software code for common programming tasks. This reduces
the need to fill in tedious syntax, but the most challenging parts of software
engineering still remain and are even more emphasized.

Increased Non-Determinism and Complexity. With the increase in
the complexity of systems, their high interdependence with other modules, and
especially the use and integration of ML models in the systems and their devel-
opment, we now shifted to an era in which systems are more non-deterministic
than ever. This excels the need for a better reasoning about the systems we
built, explainability and trust of the system, and ensuring certain “values” and
properties in the system, such as its fairness. At the same time the increasing
complexity of the systems also requires a stronger focus on properly capturing
what the user wants in the first place and ensuring the right user experience, as
well as correctly designing and integrating the systems.

Specification and User Experience (User - Developer Interaction).
Snippets of code do not make usable software systems. Software systems are
complex and their usefulness does not come down to only the quality of the
written source code. Software engineers must understand if the system being
built is the right one. Will the system solve a problem for the people who are
using it? Will the people who use the system feel good when using the system?
Will they want to keep using it? There are essential elements of the human
experience that require human understanding to ensure high quality software.

Design. Large language models cannot generate entire software systems.
Throughout the history of software engineering, integration of individual pieces

19



Figure 8: Visualization of current, near term and long term integration of Gen-
erative AI models and their impact on Source Code Abstraction.

of software into full software systems has been a challenge. Integration is ex-
tremely precise, tying the pieces together, multiple developers together specify-
ing “values”

Reasoning about generated code. Another element that still requires
human understanding is the reasoning around the code that is being produced by
these large language models. The prior changes in abstraction levels in software
engineering have been deterministic ones. If you give the same software code to
the same compiler, it will always produce the same output. This is not the case
with large language models. The models are trained from millions of examples
of prior code and each time you make a request, new and different code will
emerge.

20



List of Participants

• Thomas Fritz, University of Zurich (Organizer)

• Yasutaka Kamei, Kyushu University (Organizer)

• Thomas Zimmermann, Microsoft (Organizer)

• André N. Meyer, University of Zurich (Supporting organizers)

• Raula Kula, Nara Institute of Science and Technology

• Jin Guo, McGill University

• Hideaki Hata, Shinshu University

• Alexander Serebrenik, Eindhoven University of Technology

• Kelly Blincoe, University of Auckland

• Daniel German, University of Victoria

• Reid Holmes, University of British Columbia

• Michele Lanza, Software Institute - USI, Lugano, Universita della Svizzera
italiana

• Gail C. Murphy, University of British Columbia

• Bin Lin, Radboud University

• Margaret Storey, University of Victoria

• Dong Wang, Kyushu University

• Masanari Kondo, Kyushu University

• Andrew Begel, Carnegie Mellon University

• Jon Whittle, CSIRO’s Data61

• Christoph Treude, The University of Melbourne

• Foutse Khomh, Polytechnique Montréal

• Daniel Russo, Aalborg University

• Takashi Kobayashi, Tokyo Institute of Technology

• Nicole Novielli, University of Bari

• Filippo Lanubile, University of Bari

21



Executive Summary

The Shonan meeting resulted in several very fruitful and lively discussions, with
a focus on creating an initial list of challenges and opportunities for research in
the area of and intersection of “Artificial Intelligence” (especially AI-generated
software), the “New Future of Work” (especially teamwork & collaboration)
and “Human Aspects of Software Engineering” (especially inclusivity and ethi-
cal values).

Overall, the discussions highlighted the need for ongoing research and un-
derstanding of the complex interactions between AI, software engineering, and
human aspects, including collaboration, well-being, cultural influences, and the
evolving roles of software developers in the context of technological advance-
ments. It also emphasized the importance of considering long-term impacts and
ethical considerations in this rapidly evolving field.

In what follows, we first summarize key challenges and opportunities
for research:

• Impact of AI on workflow and job roles: The group discussed how
AI may affect the roles and responsibilities of software developers, such
as potentially reducing the need to write large chunks of code, but highly
increasing the value of code reviews. One group suggests to increasing fo-
cus on essential complexity in software engineering by considering changes
in the abstraction levels of software development, e.g., by enabling
software engineers to express their needs in natural language and generate
code for common programming tasks. Nonetheless, software engineering
still requires reasoning and understanding the higher levels of generated
code, incorporating non-deterministic nature of generated code, training
specialized members, scaling software, optimizing software, and personal-
izing it.

• The group discussed the need to understand the impact of AI and
large language models (LLMs) on teams, accountability, and job
roles. They raised questions about the skills required for software engi-
neers in the future, the implications for research design, the meaning and
future of software engineering in the context of AI-generated software,
and the increasing importance of program comprehension and visualiza-
tion to conduct thorough code reviews that reduce risks. The group also
touched upon the issue of generating trust and responsibility when relying
on AI-generated code.

• The group further discussed the potential impact of generative AI
(esp. LLMs) on various phases of the software development life-
cycle, including requirements, design, implementation, testing/validation,
maintenance, and procurement. They highlight that while generative AI
can automate several tasks in these phases, such as summarizing require-
ments, automating code reviews, and auto-documentation, there are limi-
tations to fully automating human activities such as eliciting requirements
and abstraction of design. They also note that generated code may be
hard to understand due to inadequate naming conventions, requiring hu-
man intervention and code reviews. Additionally, the ethical implications

22



of using generative AI in software engineering, such as bias, privacy, and
security, need to be carefully considered and addressed.

• Relatedly, one group identified more specific and additional challenges
that research and industry need to tackle in the context of LLM-
generated code, such as responsibility, criteria for good code, ensuring
inclusivity and reducing biases in code, understanding provenance, devel-
oper and user training, as well as managing code quality, security and
legacy.

• One breakout group initiated the development of a framework for un-
derstanding and measuring the impact of AI diffusion on human
and social aspects of software engineering, by considering the diffu-
sion based on the perspectives of McLuhan’s Tetrad. They also provide
examples of how to apply the framework.

• Researchers’ and practitioners’ challenges in keeping up with the rapid
evolution of AI-based technology: The group highlighted the diffi-
culty in keeping up with the rapid pace of technological advancements in
AI and software engineering, and emphasized the need to focus on long-
term problems and impacts rather than just the technology itself.

• The researchers agreed that successful software development teams
need to consider core human values, including inclusion, diversity,
social responsibility, emotions and well-being. These teams will, in most
cases, yield better and more creative solutions that are required to keep up
with today’s requirements and pace. Therefore, training and awareness
increase is required to foster effective communication and collaboration
within these diverse teams.

• The researchers explored factors that impact collaboration and well-
being among software engineers in the future of work, such as per-
sonality traits, company culture, and team dynamics. They discussed the
need for a holistic understanding of these factors, the influence of culture
on decision-making, and the balance between bottom-up and top-down
approaches in aligning team values.

Finally, the working group summaries contain lists of very specific research
questions that the community aims to tackle in the short as well as longer
term. In addition, concrete next steps include the creation of a vision paper to
discuss the ideas, challenges and opportunities in a short paper. In addition, one
group is considering writing a paper on their framework for understanding
and measuring the impact of AI diffusion on human and social aspects of SE.
Finally, Daniel Russo is currently in the planning phase of organizing a follow-
up workshop in Denmark, that will also be held in the Dagstuhl/Shonan-
format.
The organizers also wanted to thank all attendees for their participation, as well
as the National Institute of Informatics for supporting this wonderful Shonan
meeting.

23


