ISSN 2186-7437

NIl Shonan Meeting Report

No. 2017-12

Memory Abstraction,
Emerging Techniques and Applications

Bor-Yuh Evan Chang, Xavier Rival and Sukyoung Ryu

September 11-14, 2017

=O\ HETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Memory Abstraction,
Emerging Techniques and Applications

Organizers:
Bor-Yuh Evan Chang (CU Boulder),
Xavier Rival (CNRS, ENS, INRIA and PSL* Research University) and
Sukyoung Ryu (KAIST)

September 11-14, 2017

1 Overview of the Meeting

Static analysis aims at computing semantic properties of programs, so as to
verify properties such as absence of runtime errors, functional correctness, ter-
mination, security, and more. Since these properties are generally undecidable,
automatic program analysis tools usually need to be conservative so as to at-
tempt to prove properties of interest. In that process, they need to reason about
all components of the semantics of programs (numeric and symbolic computa-
tions, parallelism, etc). The notion of abstraction is central in static analysis:
an abstraction defines a set of logical properties that a program analysis tool
may use, their meaning, and the supporting algorithms. Numeric abstractions
made remarkable progresses early in the development of static analysis. How-
ever, to reason about complex languages (be it C, Java, ML, or JavaScript),
analysis tools also need to use a careful abstraction of the structures stored in
memory.

Many kinds of memory abstractions have been introduced in the last thirty
years. Initially, memory abstractions mainly consisted of pointer abstractions
based on aliasing graphs or points-to relations. Such abstractions cannot cope
precisely with data-structures of unbounded size, thus shape analysis techniques
were introduced in the 1990s. Shape analysis techniques rely on more complex
mathematical objects to describe unbounded memory graphs by summarizing
inductive patterns [2]. In the last decade, a large number of novel techniques
and applications for memory abstractions have emerged. In the same time, novel
abstractions for array data-structure have been developed, and many of these are
able to summarize array regions of static or dynamic size. More recently, object
structures have become common in dynamic languages and several abstractions
have been proposed, that can deal with unbounded structures indexed over
unordered keys.

Even though the development of memory abstractions still seems to be lag-
ging compared to, e.g., numeric abstraction, recent progresses seem to make
this field more mature. Structure-specific abstractions have been developed and
implemented for most common memory data-structures. For most kinds of data-
structures, we can now choose among several abstractions that provide different



levels of performance in terms of precision and cost. Moreover, client analy-
ses have been identified, that utilize memory abstractions to infer other kinds
of properties (safety of sequential or parallel programs, termination, resource
consumption).

Still, the memory abstraction research field has several open questions such
as:

e the standardization of the concrete semantic models of programming lan-
guages regarding to memory;

e the unification of APIs between abstract domains;
e the scalability of summarizing abstractions;
e the cooperation between memory abstractions;

e the effective design of abstractions for data-structures found in dynamic
languages;

e the emerging applications, e.g., to liveness, and security.

The purpose of the meeting is to bring together experts in the design and in
the use of memory abstractions, so as to leverage on the recent advances in this
field, allow for the development of new fundamental principles and tools, and
ease the use of memory abstractions in emerging applications. In the next two
sections we elaborate on the two main aspects of the envisioned seminar, namely
the memory abstraction techniques, and their applications. For each aspect, we
explain why we think such a meeting would be timely, and outline the expected
benefits.



Overview of Talks

Verivita: Lifestate Verification of Event-Driven Apps

Bor-Yuh Evan Chang, CU Boulder

Bugs in mobile applications are particularly difficult to diagnose and fix be-
cause applications are structured as a loosely-coupled set of callbacks responding
to events and interacting through a shared heap. And thus crashes are often
triggered by unexpected event orderings.

In this talk, I present some of our efforts in developing tools and techniques
for finding and fixing bugs in event-driven mobile applications. In particular,
we identify a central challenge to analyzing programs developed against event-
driven software frameworks like Android is that the possible callbacks that may
be invoked by the framework is not static for all applications but can be dynam-
ically updated by the app through its interaction with the framework. From
this observation, we develop a predictive testing technique that takes as input a
trace of execution of an app to either produce an alternative trace that possibly
witnesses violating the protocol or a proof that no such alternative trace is re-
alizable. Finally, I discuss how this approach fits into on-going work in mining
and understanding framework specifications from execution traces.

Unified Map Abstractions

Arlen Cox, Institute for Defense Analysis)

In abstract interpretation we find that we are frequently abstracting maps in
some form or another. For example, the heap is a map from addresses to values
and arrays are maps from indexes to values. This talk looks at unifying some
of these abstractions with the goal of borrowing ideas from one area of research
to apply in another. We focus on two abstractions, the Heap with Open Ob-
jects abstraction by Cox, Chang, and Rival, and the Parametric Segmentation
Functor abstraction by Cousot, Cousot, and Logozzo.

JavaScript Static Analysis with WALA
Julian Dolby, IBM

As JavaScript has become ubiquitous through rich client-side Web applica-
tions, it has become ever more important to analyze JavaScript code; it has
not, however, become any easier. Indeed, the proliferation of frameworks such
as jQuery has made static analysis ever more difficult. In this talk, I shall dis-
cuss JavaScript static analysis with WALA, describing our series of attempts to
deal with the ever-growing complexity of JavaScript applications. In keeping
with the theme of this meeting, I shall focus on two key memory abstractions
that driven our analysis.



Partially synchronous programming abstractions for fault-
tolerant distributed algorithms

Cezara Dragoi, CNRS, ENS, INRIA and PSL* Research University

Fault-tolerant distributed algorithms play an important role in many critical /high-
availability applications. These algorithms are notoriously difficult to implement
correctly, due to asynchronous communication and the occurrence of faults, such
as the network dropping messages or computers crashing.

One fundamental obstacle in having correct fault-tolerant distributed algo-
rithms is the lack of abstractions when reasoning about their behaviors. In this
talk we discuss the impact of partially synchronous programming abstractions
in increasing the confidence we have in fault-tolerant systems. We will focus
on partially synchronous models that view asynchronous faulty systems as syn-
chronous ones with an adversarial environment that simulates asynchrony and
faults by dropping messages. This view simplifies the proof arguments making
systems amendable to automated verification. We apply partial synchrony to
algorithms that solve agreement problems, such as consensus and state machine
replication.

Technically, we take a programming language perspective and define a do-
main specific language which has a high-level partially synchronous semantics
and compiles into efficient asynchronous code. We validate our technique by
defining partially synchronous implementations of algorithms like Paxos, whose
verification becomes now automated, and which compile into efficient asyn-
chronous code, that preserves the properties verified under the partially syn-
chronous semantics.

Memory Analysis in the Parfait static analysis tool

Nathan Keynes, Oracle

Parfait is an industrial-strength static analysis tool developed in Oracle Labs
(formerly Sun Labs) that runs daily over 100s of millions of lines of code in-
side Oracle. Parfait focuses on finding implementation defects in C/C++ code
(buffer overflow, memory leak, etc) and security vulnerabilities in the Java plat-
form (e.g. unguarded caller sensitive methods), with a low false positive rate.
In this talk we present a brief overview of the Parfait architecture, characterise
some of our reference workloads, and describe the approaches currently taken in
Parfait for scalable analysis of memory references. Parfaits analysis is modular,
context-sensitive, flow-sensitive and path-sensitive, using a bottom-up approach
along similar lines to access-path.

Weakly Sensitive Analysis for Unbounded Iteration over
JavaScript Objects

Yoonseok Ko, KAIST
JavaScript framework libraries such as jQuery are widely used, but compli-

cate program analyses. Indeed, they encode high-level constructions such as
class inheritance via dynamic object copies and transformations that are harder



to reason about. One common pattern used in them consists of loops that copy
or transform part or all of the fields of an object. Such loops are challenging
to precisely analyze due to weak updates and as unrolling techniques do not al-
ways apply. We observe that precise field correspondence relations are required
for client analyses (e.g. for call-graph construction). In this talk, I present an
effective design of abstractions for unbounded iterations over JavaScript objects
to precisely reason about program behaviors in such loops. Our abstractions,
we call them a composite abstraction, consist of three layers: the abstraction for
iterations, the object abstraction, and the string abstraction. The composite
abstraction allows to reason separately about the effect of distinct iterations
without resorting to full unrolling and the analysis result shows better preci-
sion and scalability than that of any other JavaScript analyses that computes
over-approximations.

An Array Content Static Analysis Based on Non Contigu-
ous Partitions

Jiangchao Liu, CNRS, ENS, INRIA and PSL* Research University

Abstract: Conventional array partitioning analyses split arrays into contigu-
ous partitions to infer properties of sets of cells. Such analyses cannot group
together non contiguous cells, even when they have similar properties. In this
paper, we propose an abstract domain which utilizes semantic properties to
split array cells into groups. Cells with similar properties will be packed into
groups and abstracted together. Additionally, groups are not necessarily con-
tiguous. This abstract domain allows to infer complex array invariants in a fully
automatic way. Experiments on examples from the Minix 1.1 memory manage-
ment and a tiny industrial operating system demonstrate the effectiveness of
the analysis.

Systematic Approaches for Increasing Soundness and Pre-
cision of Static Analyzers

Anders Moeller, Aarhus University (Joint work with Espen Sparre Andreasen
and Benjamin Barslev Nielsen.)

Building static analyzers for modern programming languages is difficult. Of-
ten soundness is a requirement, perhaps with some well-defined exceptions, and
precision must be adequate for producing useful results on realistic input pro-
grams. Formally proving such properties of a complex static analysis imple-
mentation is rarely an option in practice, which raises the challenge of how to
identify causes and importance of soundness and precision problems.

This talk presents our experience with semi-automated methods based on
delta debugging and dynamic analysis for increasing soundness and precision of
a static analyzer for JavaScript. The individual methods are well known, but
to our knowledge rarely used systematically and in combination.



Data-Driven Program Analysis

Hakjoo Oh, Korea University

In this talk, I will present our on-going project on data-driven program
analysis. An ideal program analysis should be able to adapt to a given analy-
sis task automatically, and avoid using techniques that unnecessarily improve
precision and increase analysis cost. However, building a cost-effective program
analysis tool for real-world programs is currently an art; designing adaptation
heuristics is done by trials and error, requiring a huge amount of manual ef-
fort and expertise. Furthermore, such hand-tuned heuristics are suboptimal
and brittle. Our approach to overcome this shortcoming is to combine pro-
gram analysis and machine learning, where the analysis heuristics are auto-
matically learned from codebases without reliance on analysis designers. Our
approach aims to be powerful and stable; the automatically generated heuris-
tics consistently outperform traditional rule-based heuristics. Toward this goal,
we are developing machine learning models, efficient learning algorithms, and
automated feature-engineering techniques appropriate for the program analysis
application. I will talk about the overall approach, current achievements, and
remaining challenges.

Revisiting Recency Abstraction for JavaScript: Towards an
Intuitive, Compositional, and Efficient Heap Abstraction

Jihyeok Park, KAIST

JavaScript is one of the most widely used programming languages. To un-
derstand the behaviors of JavaScript programs and to detect possible errors
in them, researchers have developed several static analyzers based on the ab-
stract interpretation framework. However, JavaScript provides various language
features that are difficult to analyze statically and precisely such as dynamic ad-
dition and removal of object properties, first-class property names, and higher-
order functions. To alleviate the problem, JavaScript static analyzers often use
recency abstraction, which refines address abstraction by distinguishing recent
objects from summaries of old objects. We observed that while recency ab-
straction enables more precise analysis results by allowing strong updates on
recent objects, it is not monotone in the sense that it does not preserve the
precision relationship between the underlying address abstraction techniques:
for an address abstraction A and a more precise abstraction B, recency abstrac-
tion on B may not be more precise than recency abstraction on A. Such an
unintuitive semantics of recency abstraction makes its composition with various
analysis sensitivity techniques also unintuitive. Thus, we want to propose a new
heap abstraction materialized by another criteria instead of the time of object
allocations. As an intermediate result, we propose a new singleton abstrac-
tion technique, which distinguishes singleton objects to allow strong updates on
them without changing a given address abstraction. We formally define recency
and singleton abstractions, and explain the unintuitive behaviors of recency ab-
straction. Our preliminary experiments show promising results for singleton
abstraction.



Towards a library of abstract domains to describe memory
properties

Xavier Rival, CNRS, ENS, INRIA, PSL* Research University

In this talk, we will present MemCAD, an abstract interpreter that integrates
a library of abstract domains to represent properties of memory states. It can
describes structures, dynamic structures, and arrays. It can also interact with
abstract domains that represent numeric properties and constraints over set
symbols. It relies on interfaces that allow adding novel abstract domains, and
to define combination operators, to build up advanced abstract domains from
basic ones. We will present the structure of the analyzer and highlight the main
abstract domains that it implements. We will also highlight the core analysis
algorithms, and show a few examples of static analyses using these domains.

Static Analysis of Android Applications for Bug Finding
Sukyoung Ryu, KAIST, organizer

Mobile applications have become prevalent and they introduce new kinds
of problems compared to traditional applications. We present a series of our
efforts in statically analyzing Android applications to find bugs and vulnera-
bilities in them. We first describe how the powerful Android Debug Bridge
(ADB), a command line tool to communicate with Android devices for debug-
ging purposes, can open a gate to adversaries. To protect Android devices from
various attacks using ADB, we present several mitigation mechanisms includ-
ing a static analysis tool that analyzes Android applications to detect possible
attacks using ADB capabilities. Then, we present HybriDroid, a static analysis
framework for Android hybrid apps. We investigate the semantics of Android
hybrid apps especially for the interoperation mechanism of Android Java and
JavaScript. Then, we design and implement a static analysis framework that an-
alyzes inter-communication between Android Java and JavaScript. As example
analyses supported by HybriDroid, we implement a bug detector that identi-
fies programmer errors due to the hybrid semantics, and a taint analyzer that
finds information leaks cross language boundaries. Our empirical evaluation
shows that the tools are practically usable in that they found previously un-
covered bugs in real-world Android hybrid apps and possible information leaks
via a widely-used advertising platform. Finally, we demonstrate Android activ-
ity injection attacks with a simple malware, and formally specify the activity
activation mechanism using operational semantics. Based on the operational
semantics, we develop a static analysis tool, which analyzes Android apps to
detect activity injection attacks. Our tool is fast enough to analyze real-world
Android apps in 6 seconds on average, and our experiments found that 1,761
apps out of 129,756 real-world Android apps inject their activities into other
apps tasks.

Optimistic JavaScript AOT Compilation
Manuel Serrano, INRIA

JavaScript has escaped web pages. It is now also used for programming web



servers, compilers, and other general purpose tasks. There is even a growing
trend for using it for programming embedded devices. In this context, JIT com-
pilation is ineffective because it is too memory demanding, and interpretation
is too slow for anything else but simplistic tasks. Static compilation, //a.k.a.//,
ahead-of-time (AOT) compilation, is an alternative approach that can combine
the good speed of JIT compilers and the lightweight memory footprint of inter-
preters.

We have designed an AOT compiler for full-fledged JavaScript. It relies on
a genuine type analysis called //hint typing//. Contrary to most approaches,
hint typing does not infer types according to the data structures the program
manipulates but according to the best code the compiler is able to generate. In
this presentation, we will present this analysis and the overall architecture of
the compiler.

Declarative Static Program Analysis: An Intelligent Sys-
tem over Programs

Yannis Smaragdakis, University of Athens

It’s the dream of most every programmer: a smart system that ”knows more
about my code than I do”. How do we go about building it? I will argue for the
benefits of using logic-based declarative languages as a means to specify static
program analysis algorithms. Every aspect of complex program behavior (e.g.,
regular language features, reflection, exceptions, code generation) is captured by
separate logical rules that cooperate to produce a model of what the code does.
The result is "holistic” analysis: although every sub-analysis has its own con-
cerns, everything is connected. Concretely, the focus will be on the Doop frame-
work for analysis of Java programs, and especially on its latest developments.
Doop encodes multiple analysis algorithms for Java declaratively, using Data-
log: a logic-based language for defining (recursive) relations. With an aggressive
optimization methodology, Doop also achieves very high performance—often an
order of magnitude faster than comparable frameworks.

An Abstract Interpretation Framework for Input Data Us-
age

Caterina Urban, ETHZ

Nowadays, data science software plays an increasingly important role in crit-
ical decision making in fields ranging from economy and finance to biology and
medicine. As we rely more and more on data science for making decisions,
we become increasingly vulnerable to programming errors. Errors that do not
cause failures can have serious consequences, since they give no indication that
something went wrong. In this talk, we focus on programming errors related to
input data usage. Specifically, we propose an abstract interpretation framework
to automatically detect unused input data. We systematically derive static anal-
yses for data usage by abstraction of the program operational trace semantics.
We propose a new abstract domain to detect single unused input data stored in
scalar variables, and we lift this abstraction by building upon an existing domain
for the analysis of compound data structures such as array and lists to detect



unused chunks of the data. Finally, we show that existing static analyses for
seemingly different problems can be cast into our framework. In particular, we
show that a form of live variable analysis and secure information flow analyses
can be used for input data usage, with varying degrees of precision.

Effect Summaries for Thread-Modular Analysis (Sound Anal-
ysis despite an Unsound Heuristic)

Thomas Vojnar, Brno University

We propose a novel guess-and-check principle to increase the efficiency of
thread-modular verification of lock-free data structures. We build on a heuris-
tic that guesses candidates for stateless effect summaries of programs by search-
ing the code for instances of a copy-and-check programming idiom common in
lock-free data structures. These candidate summaries are used to compute the
interference among threads in linear time. Since a candidate summary need not
be a sound effect summary, we show how to fully automatically check whether
the precision of candidate summaries is sufficient. We can thus perform sound
verification despite relying on an unsound heuristic. We have implemented our
approach and found it up to two orders of magnitude faster than existing ones.
The result is a joint work with Lukas Holik (FIT BUT), Roland Meyer (TU
Braunschweig), and Sebastian Wolff (TU Braunschweig and Fraunhofer ITWM,
Kaiserslautern).

Scalable Global Static Analysis, Automation, and Secrecy

Kwangkeun Yi, Seoul National University

I will talk about three techniques towards our goal of making scalable,
semantic-based global static analysis easily available to non-expert software de-
velopers. Though static analysis is widely deployed in practice (verification,
bug-finding, maintenance, optimizations, and etc.), it is still of limited use. De-
veloping an impactful static analyzer is difficult. Depending on its deployment
models, every static analysis needs to strike a different balance between its
soundness, scalability, and precision. Our position is that sound and scalable
analyzers whose precision is open as a parameter can be automatically avail-
able at least for C-like languages. I will first present our general sparse analysis
framework to achieve sound, scalable, semanti-based global analysis (to glob-
ally analyze million-line C programs in about 10 hours). Given a static analysis
definition as a fixpoint computation of an approximate semantics of the input
program, the sparse framework guides you how to make it scalable without com-
promising the analysis precision. Then I will introduce our ZooBerry system to
automatically implement this sparse techniques inside static analyzers. From a
high-level approximate semantics definition of a C-like language and its sound-
ness Coq proof, ZooBerry automatically generates a sparse static analyzer and
its verified validator. Lastly, I will discuss static analysis of encrypted programs,
to help sw developers enjoy static analysis service in clouds.



Shape and Content

Florian Zuleger, Technische Universitat Wien

Pointers in programs serve two different purposes: (1) Storage of informa-
tion; pointers are used to build data structures. (2) Semantic information;
pointers relate different data items to each other. While the program analy-
sis community has spent considerable effort on analyzing the shape of pointer
structures, much less effort has been spent on the analysis of data structure
content and the relationship between data items. In this talk I will argue that
two-variable logic with counting (C2) is an interesting choice for content anlaysis
as it can describe UML-like properties, model pointers and express weakest pre-
conditions of pointer programs. I will discuss extensions of C2 that can express
data structures such as lists and trees. Further I will present a combination of
C2 with MSO over graphs with bounded tree-width; the resulting logic allows
to describe complex data structures and is still decidable.

10



List of Participants

Bor-Yuh Evan Chang (CU Boulder, organizer)

Arlen Cox (Institute for Defense Analysis)

Julian Dolby (IBM)

Cezara Dragoi (CNRS, ENS, INRIA and PSL* Research University)
Nathan Keynes (Oracle)

Yoonseok Ko (KAIST)

Jiangchao Liu (CNRS, ENS, INRIA and PSL* Research University)
Anders Moeller (Aarhus University)

Hakjoo Oh (Korea University)

Jihyeok Park (KAIST)

Xavier Rival (CNRS, ENS, INRIA and PSL* Research University, orga-
nizer)

Sukyoung Ryu (KAIST, organizer)

Manuel Serrano (INRIA)

Yannis Smaragdakis (University of Athens)
Caterina Urban (ETHZ)

Thoméas Vojnar (Brno University)
Kwangkeun Yi (Seoul National University)

Florian Zuleger (Technische Universitdt Wien)

11



Meeting Schedule

Check-in Day: September 10 (Sun)
e 15:00-19:00 Hotel Check In
e 19:00-21:00 Welcome Reception
Day1l: September 11 (Mon)
e 7:30-9:00 Breakfast (Cafeteria ”Oak”)
e 9:00-9:10 Introduction Movie of NII Shonan Meetings
e 9:10-9:45 Seminar introduction, and presentation of the members

9:45-10:30 Talk: Arlen Cox

e 10:30-11:00 Break

e 11:00-12:00 Talks: Anders Mller / Manuel Serrano

e 12:00-13:30 Lunch (Cafeteria ”Oak”)

e 13:30-14:00 Shooting of the group photo

e 14:00-15:30 Talks: Xavier Rival / Yannis Smaragdakis
e 15:30-16:00 Break

e 16:00-18:00 Talks: Florian Zuleger / Jihyeok Park / Sukyoung Ryu /
Bor-Yuh Evan Chang

e 18:00-19:30 Dinner (Cafeteria ”Oak”)

Day2: September 12 (Tue)
e 7:30-9:00 Breakfast (Cafeteria ”Oak”)
e 9:00-10:30 Talks: Kwangkeun Yi / Nathan Keynes
e 10:30-11:00 Break
e 11:00-12:00 Talks: Yoonseok Ko / Jiangchao Liu
e 12:00-13:30 Lunch (Cafeteria ”Oak”)
e 13:30-15:00 Talks: Thom&s Vojnar / Julian Dolby
e 15:00-15:30 Break
e 15:30-17:15 Talks: Caterina Urban / Hakjoo Oh / Cezara Dragoi
e 17:15-18:00 Discussion: Plan for the Week
e 18:00-19:30 Dinner (Cafeteria ”Oak”)

Day3: September 13 (Wed)
e 7:30-9:00 Breakfast (Cafeteria ”Oak”)

12



9:00-10:30 Talks

10:30-11:00 Break

11:00-12:00 Talks

12:00-13:30 Lunch (Cafeteria ” Oak”)
13:30-18:15 Excursion

e 18:15-19:30 Main Banquet
Day4: September 14 (Thu)
e 7:30-9:00 Breakfast (Cafeteria ”Oak”)
e 9:00-10:30 Talks
e 10:30-11:00 Break
11:00-12:00 Talks

12:00-13:30 Lunch (Cafeteria ” Oak”)
e 13:30 End of the Seminar

13



